Alireza Abbasi Ghiri, Morteza Seidi, James Wallace, Kelly Cheever, Marzieh Memar
{"title":"Exploring Sex-Based Variations in Head Kinematics During Soccer Heading.","authors":"Alireza Abbasi Ghiri, Morteza Seidi, James Wallace, Kelly Cheever, Marzieh Memar","doi":"10.1007/s10439-024-03670-2","DOIUrl":"https://doi.org/10.1007/s10439-024-03670-2","url":null,"abstract":"<p><p>While studies indicate that females experience a higher concussion risk and more severe outcomes in soccer heading compared to males, comprehensive data on the underlying factors contributing to these sex-based differences are lacking. This study investigates the sex differences in the head-to-ball impact kinematics among college-aged soccer headers in a laboratory-controlled setting. Forty subjects (20 females, 20 males) performed ten headers, and impact kinematics, including peak angular acceleration and velocity (PAA, PAV) and peak linear acceleration (PLA), were measured using mouthguards. Video recordings verified impacts and impact locations. Participants' head mass was estimated from their weights. The relationship between head mass and kinematic parameters was analyzed using Pearson correlation. The effects of head mass, sex, and impact location on kinematic parameters were assessed using MANOVA with and without head mass as a covariate. Results showed that head mass, larger in males than females, significantly affects PAA and PLA, the greater the head mass, the lower PAA and PLA. However, head mass has no effect on PAV. Females showed significantly higher PAA and PLA components but no significant differences in PAV. Impact location significantly influenced PAV, showing higher magnitudes for frontal impacts compared to top-front impacts, with no significant effects on PAA and PLA. Our results agree with epidemiological evidence that female soccer players face greater concussion risks than males, which can be attributed to their higher header-induced PAA. Future research could consider interventions like changing ball pressure, using protective headgear, and improving heading techniques to reduce high-magnitude accelerations in females.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martha B Alvarez-Elizondo, Annat Raiter, Rinat Yerushalmi, Daphne Weihs
{"title":"Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer.","authors":"Martha B Alvarez-Elizondo, Annat Raiter, Rinat Yerushalmi, Daphne Weihs","doi":"10.1007/s10439-024-03673-z","DOIUrl":"https://doi.org/10.1007/s10439-024-03673-z","url":null,"abstract":"<p><p>Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Patellofemoral Joint Contact Area Quantified In Vivo During Daily Activities.","authors":"Shanyuanye Guan, Marcus G Pandy","doi":"10.1007/s10439-024-03641-7","DOIUrl":"10.1007/s10439-024-03641-7","url":null,"abstract":"<p><p>In vivo measurements of patellofemoral joint contact area are scarce. Patellofemoral contact area has been measured in living people under static conditions with the knee held at fixed angles between 0 and 60° of flexion. No previous study to our knowledge has measured patellofemoral contact area in vivo during dynamic activity. The aim of this study was to measure and compare patellofemoral joint contact area in healthy people across a range of daily activities. Mobile biplane X-ray imaging was used to measure 3D tibiofemoral and patellofemoral kinematics in level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weightbearing) knee flexion and knee extension. The kinematic data were combined with magnetic resonance imaging to determine patellofemoral joint contact area at each time point during each activity. The knee flexion angle explained, respectively, 83%, 80%, and 72% of the variability in the total, lateral, and medial patellofemoral contact areas measured across all participants and all activities. Total, lateral, and medial patellofemoral contact areas increased from 0 to 60° of knee flexion and then decreased as the flexion angle increased further, up to ~ 120°. Patellofemoral contact area was less sensitive to the type of activity and hence joint load. The lateral patellofemoral contact area was larger than the medial patellofemoral contact area throughout the range of knee flexion in all activities (p < 0.001). Knowledge of patellofemoral contact area during daily activities like walking improves our understanding of patellofemoral joint biomechanics and will assist in validating computational models of the patellofemoral joint.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"260-270"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manon Bas Dit Nugues, Leo Lamassoure, Giuseppe Rosi, Charles Henri Flouzat-Lachaniette, Roman Hossein Khonsari, Guillaume Haiat
{"title":"An Instrumented Hammer to Detect the Rupture of the Pterygoid Plates.","authors":"Manon Bas Dit Nugues, Leo Lamassoure, Giuseppe Rosi, Charles Henri Flouzat-Lachaniette, Roman Hossein Khonsari, Guillaume Haiat","doi":"10.1007/s10439-024-03596-9","DOIUrl":"10.1007/s10439-024-03596-9","url":null,"abstract":"<p><strong>Purpose: </strong>Craniofacial osteotomies involving pterygomaxillary disjunction are common procedures in maxillofacial surgery. Surgeons still rely on their proprioception to determine when to stop impacting the osteotome, which is important to avoid complications such as dental damage and bleeding. Our group has developed a technique consisting in using an instrumented hammer that can provide information on the mechanical properties of the tissue located around the osteotome tip. The aim of this study is to determine whether a mallet instrumented with a force sensor can be used to predict the crossing of the osteotome through the pterygoid plates.</p><p><strong>Methods: </strong>31 osteotomies were carried out in 16 lamb skulls. For each impact, the force signal obtained was analysed using a dedicated signal processing technique. A prediction algorithm based on an SVM classifier and a cost matrix was applied to the database.</p><p><strong>Results: </strong>We showed that the device could always detect the crossing of the osteotome, sometimes before its occurrence. The prediction accuracy of the device was 94.7%. The method seemed to be sensitive to the thickness of the plate and to crack apparition and propagation.</p><p><strong>Conclusion: </strong>These results pave the way for the development of a per-operative decision support system in maxillofacial surgery.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"59-70"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinge Wang, Thomas C Yu, Michael S Kolodney, Peter L Perrotta, Gangqing Hu
{"title":"Adapting ChatGPT for Color Blindness in Medical Education.","authors":"Jinge Wang, Thomas C Yu, Michael S Kolodney, Peter L Perrotta, Gangqing Hu","doi":"10.1007/s10439-024-03656-0","DOIUrl":"10.1007/s10439-024-03656-0","url":null,"abstract":"<p><p>Color vision deficiency (CVD) affects a significant portion of the population, yet its impact is often overlooked in medical education, especially in visually demanding specialties like dermatology, pathology, and radiology. In this study, we investigated the potential of ChatGPT to comprehend CVD-simulated images in image-based diagnostic tasks. Notably, the model successfully adapted its diagnostic reasoning to match CVD-modified color perception while preserving high prediction accuracy. These findings highlight the potential of using ChatGPT to foster more inclusive learning environments for individuals with CVD in visually intensive medical specialties.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"5-8"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanjun Xie, Yi Huang, Hugo C S Stevenson, Li Yin, Kaijie Zhang, Zain Husain Islam, William Aaron Marcum, Campbell Johnston, Nicholas Hoyt, Eric William Kent, Bowen Wang, John A Hossack
{"title":"Sonothrombolysis Using Microfluidically Produced Microbubbles in a Murine Model of Deep Vein Thrombosis.","authors":"Yanjun Xie, Yi Huang, Hugo C S Stevenson, Li Yin, Kaijie Zhang, Zain Husain Islam, William Aaron Marcum, Campbell Johnston, Nicholas Hoyt, Eric William Kent, Bowen Wang, John A Hossack","doi":"10.1007/s10439-024-03609-7","DOIUrl":"10.1007/s10439-024-03609-7","url":null,"abstract":"<p><p>The need for safe and effective methods to manage deep vein thrombosis (DVT), given the risks associated with anticoagulants and thrombolytic agents, motivated research into innovative approaches to resolve blood clots. In response to this challenge, sonothrombolysis is being explored as a technique that combines microbubbles, ultrasound, and thrombolytic agents to facilitate the aggressive dissolution of thrombi. Prior studies have indicated that relatively large microbubbles accelerate the dissolution process, either in an in vitro or an arterial model. However, sonothrombolysis using large microbubbles must be evaluated in venous thromboembolism diseases, where blood flow velocity is not comparable. In this study, the efficacy of sonothrombolysis was validated in a murine model of pre-existing DVT. During therapy, microfluidically produced microbubbles of 18 μm diameter and recombinant tissue plasminogen activator (rt-PA) were administered through a tail vein catheter for 30 min, while ultrasound was applied to the abdominal region of the mice. Three-dimensional ultrasound scans were performed before and after therapy for quantification. The residual volume of the thrombi was 20% in animals post sonothrombolysis versus 52% without therapy ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.012</mn> <mo><</mo> <mn>0.05</mn></mrow> </math> ), indicating a significant reduction in DVT volume. Histological analysis of tissue sections confirmed a reduction in DVT volume post-therapy. Therefore, large microbubbles generated from a microfluidic device show promise in ultrasound-assisted therapy to address concerns related to venous thromboembolism.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"109-119"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comprehensive Literature Review on Advancements and Challenges in 3D Bioprinting of Human Organs: Ear, Skin, and Bone.","authors":"Aishwarya Varpe, Marwana Sayed, Nikhil S Mane","doi":"10.1007/s10439-024-03580-3","DOIUrl":"10.1007/s10439-024-03580-3","url":null,"abstract":"<p><p>The field of 3D bioprinting is rapidly emerging within the realm of regenerative medicine, offering significant potential in dealing with the issue of organ shortages. Despite being in its early stages, it has the potential to replicate tissue structures accurately, providing new potential solutions for reconstructive surgery. This review explores the diverse applications of 3D bioprinting in regenerative medicine, pharmaceuticals, and the food industry, specifically focusing on ear, skin, and bone tissues due to their unique challenges and implications in the field. Significant progress has been made in cartilage and bone scaffold fabrication in ear reconstruction, yet challenges in functional maturation persist. Recent advancements highlight the potential for patient-specific ear substitutes, emphasizing the need for extensive clinical trials. In skin regeneration, 3D bioprinting addresses limitations in existing models, offering opportunities for improved wound healing and realistic skin models. While challenges exist, progress in biomaterials and in-situ bioprinting holds promise. In bone regeneration, 3D bioprinting presents personalized solutions for defects, but scaffold design refinement and addressing regulatory and ethical considerations are crucial. The transformative potential of 3D bioprinting in the field of medicine holds the promise of redefining therapeutic approaches and delivering personalized treatments and functional tissues. Interdisciplinary collaboration is essential for fully realizing the capabilities of 3D bioprinting. This review provides a detailed analysis of current methodologies, challenges, and prospects in 3D bioprinting for ear, skin, and bone tissue regeneration.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"14-33"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Baroni, Sara Oliviero, Antonino Amedeo La Mattina, Melania Maglio, Lucia Martini, Milena Fini, Marco Viceconti
{"title":"Calibration of Aseptic Loosening Simulation for Coatings Osteoinductive Effect.","authors":"Sofia Baroni, Sara Oliviero, Antonino Amedeo La Mattina, Melania Maglio, Lucia Martini, Milena Fini, Marco Viceconti","doi":"10.1007/s10439-024-03588-9","DOIUrl":"10.1007/s10439-024-03588-9","url":null,"abstract":"<p><p>The risk of aseptic loosening in cementless hip stems can be reduced by improving osseointegration with osteoinductive coatings favoring long-term implant stability. Osseointegration is usually evaluated in vivo studies, which, however, do not reproduce the mechanically driven adaptation process. This study aims to develop an in silico model to predict implant osseointegration and the effect of induced micromotion on long-term stability, including a calibration of the material osteoinductivity with conventional in vivo studies. A Finite Element model of the tibia implanted with pins was generated, exploiting bone-to-implant contact measures of cylindrical titanium alloys implanted in rabbits' tibiae. The evolution of the contact status between bone and implant was modeled using a finite state machine, which updated the contact state at each iteration based on relative micromotion, shear and tensile stresses, and bone-to-implant distance. The model was calibrated with in vivo data by identifying the maximum bridgeable gap. Afterward, a push-out test was simulated to predict the axial load that caused the macroscopic mobilization of the pin. The bone-implant bridgeable gap ranged between 50 μm and 80 μm. Predicted push-out strength ranged from 19 N to 21 N (5.4 MPa-3.4 MPa) depending on final bone-to-implant contact. Push-out strength agrees with experimental measurements from a previous animal study (4 ± 1 MPa), carried out using the same implant material, coated, or uncoated. This method can partially replace in vivo studies and predict the long-term stability of cementless hip stems.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"34-47"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Poloni, Luca Soliveri, Anna Caroli, Andrea Remuzzi, Michela Bozzetto
{"title":"The Potential of Sound Analysis to Reveal Hemodynamic Conditions of Arteriovenous Fistulae for Hemodialysis.","authors":"Sofia Poloni, Luca Soliveri, Anna Caroli, Andrea Remuzzi, Michela Bozzetto","doi":"10.1007/s10439-024-03638-2","DOIUrl":"10.1007/s10439-024-03638-2","url":null,"abstract":"<p><strong>Purpose: </strong>Arteriovenous fistula (AVF), the preferred vascular access for hemodialysis, is associated with high failure rate. The aim of this study was to investigate the potential of AVF sound auscultation in providing quantitative information on AVF hemodynamic conditions.</p><p><strong>Methods: </strong>This single-center prospective study involved six patients with native radio-cephalic AVFs who underwent multiple follow-up visits. Doppler Ultrasound blood flow volume (BFV) assessment and electronic stethoscope-based sound recordings were performed during each visit, whereas MRIs were acquired 3 days, 3 weeks and 1 year after surgery. Computational fluid dynamic (CFD) simulations were performed on patient-specific MRI-derived geometrical models.</p><p><strong>Results: </strong>Higher values of median peak amplitudes ratios (high-low peak ratio-HLPR) were found to be associated with complex blood flow and velocity streamlines recirculation at systolic peak, and corresponding extended regions of high oscillatory shear index (OSI). On the contrary, lower values of HLPR were associated with laminar flow pattern and low values of OSI. Significant differences were observed in HLPR between subgroups with extended or limited areas with OSI > 0.1 (0.67 vs 0.31, respectively). Significant relationships were found between AVF sound intensity and brachial BFV (slope = 0.103, p < 0.01) as well as between longitudinal changes in brachial BFV and HLPR (slope = - 0.001, p < 0.01).</p><p><strong>Conclusion: </strong>Our results show that AVF sound can be exploited to extract fundamental information on AVF hemodynamic conditions, providing indication of the presence of complex hemodynamic and adequate BFV to perform hemodialysis. Sound analysis has therefore the potential to improve clinical AVF surveillance and to ameliorate outcome.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"230-240"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active Machine Learning for Pre-procedural Prediction of Time-Varying Boundary Condition After Fontan Procedure Using Generative Adversarial Networks.","authors":"Wenyuan Song, David Frakes, Lakshmi Prasad Dasi","doi":"10.1007/s10439-024-03640-8","DOIUrl":"10.1007/s10439-024-03640-8","url":null,"abstract":"<p><p>The Fontan procedure is the definitive palliation for pediatric patients born with single ventricles. Surgical planning for the Fontan procedure has emerged as a promising vehicle toward optimizing outcomes, where pre-operative measurements are used prospectively as post-operative boundary conditions for simulation. Nevertheless, actual post-operative measurements can be very different from pre-operative states, which raises questions for the accuracy of surgical planning. The goal of this study is to apply machine leaning techniques to describing pre-operative and post-operative vena caval flow conditions in Fontan patients in order to develop predictions of post-operative boundary conditions to be used in surgical planning. Based on a virtual cohort synthesized by lumped-parameter models, we proposed a novel diversity-aware generative adversarial active learning framework to successfully train predictive deep neural networks on very limited amount of cases that are generally faced by cardiovascular studies. Results of 14 groups of experiments uniquely combining different data query strategies, metrics, and data augmentation options with generative adversarial networks demonstrated that the highest overall prediction accuracy and coefficient of determination were exhibited by the proposed method. This framework serves as a first step toward deep learning for cardiovascular flow prediction/regression with reduced labeling requirements and augmented learning space.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":"217-229"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}