Large Language Models in Injury Prediction Tools: Simplifying User Interactions and Improving Risk Interpretation.

IF 5.4 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Vivek Bhaskar Kote, Koen Flores, Brian Connolly, Diego Pensado, Anup D Pant, Daniel P Nicolella
{"title":"Large Language Models in Injury Prediction Tools: Simplifying User Interactions and Improving Risk Interpretation.","authors":"Vivek Bhaskar Kote, Koen Flores, Brian Connolly, Diego Pensado, Anup D Pant, Daniel P Nicolella","doi":"10.1007/s10439-025-03845-5","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in Large Language Models (LLMs) offer new opportunities to improve accessibility and usability of finite-element (FE) modeling in injury biomechanics. This study presents an LLM-based tool capable of guiding novice users in selecting response surface models trained on FE simulation results and predicting injury outcomes in Behind Armor Blunt Trauma scenarios. Beyond executing predictive tasks, the LLM-based tool communicates complex injury metrics in clear, non-technical language, facilitating broader understanding and adoption of sophisticated modeling frameworks. These findings highlight the potential of integrating LLMs with FE modeling to bridge expertise gaps, enhance interactivity, and support decision-making in injury prediction and other engineering domains.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-025-03845-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in Large Language Models (LLMs) offer new opportunities to improve accessibility and usability of finite-element (FE) modeling in injury biomechanics. This study presents an LLM-based tool capable of guiding novice users in selecting response surface models trained on FE simulation results and predicting injury outcomes in Behind Armor Blunt Trauma scenarios. Beyond executing predictive tasks, the LLM-based tool communicates complex injury metrics in clear, non-technical language, facilitating broader understanding and adoption of sophisticated modeling frameworks. These findings highlight the potential of integrating LLMs with FE modeling to bridge expertise gaps, enhance interactivity, and support decision-making in injury prediction and other engineering domains.

损伤预测工具中的大型语言模型:简化用户交互和改进风险解释。
大语言模型(LLMs)的发展为损伤生物力学中有限元(FE)建模的可及性和可用性提供了新的机会。本研究提出了一种基于法学硕士的工具,能够指导新手用户选择基于有限元模拟结果训练的响应面模型,并预测装甲钝性创伤场景中的损伤结果。除了执行预测任务外,基于llm的工具还能以清晰、非技术的语言传达复杂的损伤指标,促进更广泛的理解和采用复杂的建模框架。这些发现强调了将法学硕士与有限元建模相结合的潜力,可以弥合专业知识差距,增强交互性,并支持损伤预测和其他工程领域的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信