Ryan Gellner, Mark T Begonia, Matthew Wood, Lewis Rockwell, Taylor Geiman, Caitlyn Jung, Blake Gellner, Allison MacMartin, Sophia Manlapit, Steve Rowson
{"title":"Comparison of Instrumented Mouthguard Post-Processing Methods.","authors":"Ryan Gellner, Mark T Begonia, Matthew Wood, Lewis Rockwell, Taylor Geiman, Caitlyn Jung, Blake Gellner, Allison MacMartin, Sophia Manlapit, Steve Rowson","doi":"10.1007/s10439-025-03687-1","DOIUrl":"https://doi.org/10.1007/s10439-025-03687-1","url":null,"abstract":"<p><p>Instrumented head acceleration measurement devices are commonly used in research studies to determine head acceleration exposure in certain populations. Instrumented mouthguards pair directly to the user's teeth and offer six-degree-of-freedom measurements. Though many studies have recently used these devices, post-processing techniques vary by study. Other studies have attempted to label impact quality or coupling status, also with varying methods. This study sought to compare the effect of post-processing and labeling methods on reported exposure distribution characteristics in instrumented mouthguard data from ice hockey players. We collected data from 18 female adolescent ice hockey players on two teams for an entire season. We then post-processed the measured signals using five different techniques: (1) the instrumented mouthguard manufacturer's data output, (2) a 500 Hz linear acceleration filter and a 300 Hz angular velocity filter, (3) HEADSport, (4) a 100 Hz linear acceleration filter and a 175 Hz angular velocity filter, and (5) a salvaging process to detect and remove decoupling based on signal frequency content. The post-processing techniques affected the reported exposure distributions by changing the mean, median, and 95th percentile values of peak linear and angular kinematics. We also compared labeling techniques by measuring agreement and inter-rater reliability between three labeling techniques: the instrumented mouthguard manufacturer's label, Luke et al.'s coupling label, and our classification learner that detects and labels decoupling. We found that the labeling techniques had low agreement about which acceleration events were the best to keep. Labeling technique also influenced the reported distributions' descriptive statistics. Post-processing and event labeling are crucial components of head acceleration event exposure studies. Methods should be described by researchers, and standardization should be sought to allow for better cross-study comparison. Published and publicly available techniques can help move the field toward this ideal. Researchers should be aware of the potential effect post-processing can have on a population's final reported exposure metrics.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clara Bernardelli, Monica Piergiovanni, Elena Bianchi, Carmelo Carlo-Stella, Maria Laura Costantino, Giustina Casagrande
{"title":"A Microfluidic Approach for Intracellular Delivery into Red Blood Cells: A Deeper Understanding of the Role of Chemical/Rheological Properties of the Cellular Suspension.","authors":"Clara Bernardelli, Monica Piergiovanni, Elena Bianchi, Carmelo Carlo-Stella, Maria Laura Costantino, Giustina Casagrande","doi":"10.1007/s10439-025-03678-2","DOIUrl":"https://doi.org/10.1007/s10439-025-03678-2","url":null,"abstract":"<p><p>Red Blood Cells (RBCs) are a promising drug delivery system candidate for many drugs. Using autologous cells helps to overcome biocompatibility issues, while microfluidics allows accurate control of the intracellular delivery of molecules through fluidic shear stress. With the ultimate goal of exploiting this delivery technique for clinical applications, we investigate how the chemical/rheological characteristics of the suspension and the properties of the RBCs in different animals influence the delivery mechanism. As regard the suspension of RBC, we study the effects induced by the hematocrit and by the presence of proteins such as albumin (Bovine Serum Albumin-BSA). Regarding the cellular properties of RBCs, we aim to investigate the exportability of the technique to the RBC of the most used animal models and identify the most suitable one. The presence of BSA implies a more significant variability of the intracellular delivery. However, 70 ÷ 94% of the cells have successfully encapsulated the probe molecule. Regarding the effect of hematocrit, however, the implementation of the experiment is more challenging due to the increase in viscosity and the easier sedimentation at low flow rates. Evaluation of intracellular delivery in the RBCs of various animal samples has instead led to the proposal of the mouse as the most suitable model for preclinical studies on this particular delivery approach.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiwen Huang, Jinglong Liu, Yan Yao, Lizhen Wang, Yubo Fan
{"title":"Fatigue Behavior of the Auxetic Porous Bone Screw Under the Multiaxial Cyclic Loads in Tibiotalocalcaneal Arthrodesis.","authors":"Huiwen Huang, Jinglong Liu, Yan Yao, Lizhen Wang, Yubo Fan","doi":"10.1007/s10439-025-03693-3","DOIUrl":"https://doi.org/10.1007/s10439-025-03693-3","url":null,"abstract":"<p><strong>Purpose: </strong>The auxetic porous bone screw (AS) has favorable anti-pullout and osseointegration performance, demonstrating application potential in orthopedic surgeries. The uniaxial fatigue behavior of AS has been well understood. Considering that AS will withstand complex physiological loads in practical application, this study aims to investigate the fatigue behavior of AS under the multiaxial loads in tibiotalocalcaneal arthrodesis.</p><p><strong>Methods: </strong>AS and nonauxetic bone screw (NS) with the same porosity were designed based on re-entrant and hexagonal units, respectively. Finite element models of tibiotalocalcaneal arthrodesis implanted with AS and NS were established. Based on the curves of ground reaction forces borne by foot during normal gait cycle, the multiaxial loading spectrums were created and applied to the models. The multiaxial fatigue simulations were conducted to calculate the fatigue life and principal stress distributions of bone screws.</p><p><strong>Results: </strong>Under the multiaxial loads in tibiotalocalcaneal arthrodesis, fatigue fracture was prone to occur in the AS and NS implanted in medial calcaneus. The minimum fatigue life and maximum principal stress of AS and NS were all located near the screw caps connected with the fixation plate. The tensile stress concentration of AS was significantly higher. The estimated fatigue life of AS and NS was approximately 46400 and 1820000 cycles, respectively.</p><p><strong>Conclusion: </strong>The fatigue life of AS was significantly lower than that of NS, which could not meet the fatigue resistance requirement during the recovery period of tibiotalocalcaneal arthrodesis. Local optimization should be conducted near the screw cap of AS to improve its multiaxial fatigue resistance.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lizzie Walker, Daniel Gordon, Alexander Chiaramonti, Shangping Wang, Zhaoxu Meng, Dane Daley, Elizabeth Slate, Hai Yao, Vincent D Pellegrini, Yongren Wu
{"title":"Correction: Morphological and Mechanical Property Differences in Trapeziometacarpal Ligaments of Healthy and Osteoarthritic Female Joints.","authors":"Lizzie Walker, Daniel Gordon, Alexander Chiaramonti, Shangping Wang, Zhaoxu Meng, Dane Daley, Elizabeth Slate, Hai Yao, Vincent D Pellegrini, Yongren Wu","doi":"10.1007/s10439-025-03694-2","DOIUrl":"10.1007/s10439-025-03694-2","url":null,"abstract":"","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleep Apnea Detection Using EEG: A Systematic Review of Datasets, Methods, Challenges, and Future Directions.","authors":"Shireen Fathima, Maaz Ahmed","doi":"10.1007/s10439-025-03691-5","DOIUrl":"https://doi.org/10.1007/s10439-025-03691-5","url":null,"abstract":"<p><strong>Purpose: </strong>Sleep Apnea (SA) affects an estimated 936 million adults globally, posing a significant public health concern. The gold standard for diagnosing SA, polysomnography, is costly and uncomfortable. Electroencephalogram (EEG)-based SA detection is promising due to its ability to capture distinctive sleep stage-related characteristics across different sub-band frequencies. This study aims to review and analyze research from the past decade on the potential of EEG signals in SA detection and classification focusing on various deep learning and machine learning techniques, including signal decomposition, feature extraction, feature selection, and classification methodologies.</p><p><strong>Method: </strong>A systematic literature review using the preferred reporting items for systematic reviews and meta-Analysis (PRISMA) and PICO guidelines was conducted across 5 databases for publications from January 2010 to December 2024.</p><p><strong>Results: </strong>The review involved screening a total of 402 papers, with 63 selected for in-depth analysis to provide valuable insights into the application of EEG signals for SA detection. The findings underscore the potential of EEG-based methods in improving SA diagnosis.</p><p><strong>Conclusion: </strong>This study provides valuable insights, showcasing significant advancements while identifying key areas for further exploration, thereby laying a strong foundation for future research in EEG-based SA detection.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan Gellner, Mark T Begonia, Matthew Wood, Lewis Rockwell, Taylor Geiman, Caitlyn Jung, Blake Gellner, Allison MacMartin, Sophia Manlapit, Steve Rowson
{"title":"Detecting and Salvaging Head Impacts with Decoupling Artifacts from Instrumented Mouthguards.","authors":"Ryan Gellner, Mark T Begonia, Matthew Wood, Lewis Rockwell, Taylor Geiman, Caitlyn Jung, Blake Gellner, Allison MacMartin, Sophia Manlapit, Steve Rowson","doi":"10.1007/s10439-025-03689-z","DOIUrl":"https://doi.org/10.1007/s10439-025-03689-z","url":null,"abstract":"<p><p>In response to growing evidence that repetitive head impact exposure and concussions can lead to long-term health consequences, many research studies are attempting to quantify the frequency and severity of head impacts incurred in various sports and occupations. The most popular apparatus for doing so is the instrumented mouthguard (iMG). While these devices hold greater promise of head kinematic accuracy than their helmet-mounted predecessors, data artifacts related to iMG decoupling still plague results. We recreated iMG decoupling artifacts in a laboratory test series using an iMG fit to a dentition mounted in a NOCSAE headform. With these data, we identified time, frequency, and time-frequency features of decoupled head impacts that we used in a machine learning classification algorithm to predict decoupling in six-degree-of-freedom iMG signals. We compared our machine learning algorithm predictions on the laboratory series and 80 video-verified field head acceleration events to several other proprietary and published methods for predicting iMG decoupling. We also present a salvaging method to remove decoupling artifacts from signals and reduce peak resultant error when decoupling is detected. Future researchers should expand these methods using on-field data to further refine and enable prediction of iMG decoupling during live volunteer use. Combining the presented machine learning model and salvaging technique with other published methods, such as infrared proximity sensing, advanced triggering thresholds, and video review, may enable researchers to identify and salvage data with decoupling artifacts that previously would have had to be discarded.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aditya Satishkumar Bantwal, Amit Kumar Bhayadia, Hui Meng
{"title":"Importance of Considering Temporal Variations in Pulse Wave Velocity for Accurate Blood Pressure Prediction.","authors":"Aditya Satishkumar Bantwal, Amit Kumar Bhayadia, Hui Meng","doi":"10.1007/s10439-025-03681-7","DOIUrl":"https://doi.org/10.1007/s10439-025-03681-7","url":null,"abstract":"<p><strong>Purpose: </strong>Continuous, cuffless blood pressure (BP) monitoring devices based on measuring pulse wave velocity (PWV) or pulse transit time (PTT) are emerging but are often plagued by large prediction errors. A key issue is that these techniques typically rely on a single PWV value, assuming a linear response and small arterial wall deformations. However, arterial response to BP is inherently nonlinear, with PWV varying over time [PWV(t)] by up to 50% during a cardiac cycle. This study evaluates the impact of assuming a single PWV on BP prediction accuracy.</p><p><strong>Method: </strong>Using a Fluid-structure Interaction (FSI) testbed, we simulate the radial and common carotid arteries with the Holzapfel-Gasser-Ogden (HGO) constitutive model to capture nonlinear arterial behavior under a pulsatile physiological blood flow. Pressure data from FSI simulation are used as the ground truth, while inner area A(t) and two PWV values, at diastole and systole, serve as inputs to BP prediction models. Two models are tested: one using a single PWV value, emulating existing PWV-based BP prediction methods; another using the two PWV values to account for PWV(t).</p><p><strong>Results: </strong>The single-PWV BP model produced prediction errors of 17.44 mmHg and 6.57 mmHg for the radial and carotid arteries, respectively. The model incorporating two PWV values reduced these errors by 90.6% and 96.8%, respectively.</p><p><strong>Conclusion: </strong>Relying on a single PWV in BP prediction models can lead to significant errors. To improve BP accuracy, future efforts should focus on incorporating PWV(t), or at least both diastolic and systolic PWV values, into these models.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Rezaeitaleshmahalleh, Z Lyu, Nan Mu, Varatharajan Nainamalai, Jinshan Tang, J J Gemmete, A S Pandey, J Jiang
{"title":"Improving Prediction of Intracranial Aneurysm Rupture Status Using Temporal Velocity-Informatics.","authors":"M Rezaeitaleshmahalleh, Z Lyu, Nan Mu, Varatharajan Nainamalai, Jinshan Tang, J J Gemmete, A S Pandey, J Jiang","doi":"10.1007/s10439-025-03686-2","DOIUrl":"https://doi.org/10.1007/s10439-025-03686-2","url":null,"abstract":"<p><p>This study uses a spatial pattern analysis of time-resolved aneurysmal velocity fields to enhance the characterization of intracranial aneurysms' (IA) rupture status. We name this technique temporal velocity-informatics (TVI). In this study, using imaging data obtained from 112 subjects harboring IAs with known rupture status, we reconstructed 3D models to get aneurysmal velocity data by performing computational fluid dynamics (CFD) simulations and morphological information. TVI analyses were conducted for time-resolved velocity fields to quantitatively obtain spatial and temporal flow disturbance. Lastly, we employed four machine learning (ML) methods (e.g., support vector machine [SVM]) to evaluate the prediction performance of the proposed TVI. Overall, the SVM's prediction with TVI performed the best: an area under the curve (AUC) value of 0.92 and a total accuracy of 86%. With TVI, the SVM classifier correctly identified 77 and 92% of ruptured and unruptured IAs, respectively.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension.","authors":"Ana C Estrada, Jay D Humphrey","doi":"10.1007/s10439-025-03685-3","DOIUrl":"https://doi.org/10.1007/s10439-025-03685-3","url":null,"abstract":"<p><strong>Purpose: </strong>Multiple cell types interact within the aortic wall to control development, homeostasis, and adaptation as well as to drive disease progression. Given the complexity of these interactions and their manifestations at the tissue level, there is a pressing need for a new class of computational models that integrate data across scales.</p><p><strong>Methods: </strong>We meld logic-based cell signaling models of vascular smooth muscle cells, adventitial fibroblasts, and macrophages and couple this multi-cell model with a tissue level-constrained mixture model of aortic growth and remodeling. The coupled multi-scale model is parameterized using data from the literature and then specialized for the case of angiotensin II-induced hypertensive remodeling of the descending thoracic aorta in wild-type mice.</p><p><strong>Results: </strong>We contrast important contributions of chemo- and mechano-stimulation of cell responses and identify critical roles of recruited macrophages in driving the non-homeostatic thickening of the adventitial layer that reduces biaxial wall stress below setpoint values.</p><p><strong>Conclusion: </strong>We show the utility of a multi-scale, multi-cell model in delineating effects of different chemo-mechanical stimuli in aortic remodeling in hypertension.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active Arm Swing During Running Improves Rotational Stability of the Upper Body and Metabolic Energy Efficiency.","authors":"Young-Jun Koo, Naomichi Ogihara, Seungbum Koo","doi":"10.1007/s10439-025-03688-0","DOIUrl":"https://doi.org/10.1007/s10439-025-03688-0","url":null,"abstract":"<p><strong>Purpose: </strong>The kinematic benefits of arm swing during running for upper body stability have been previously investigated, while its role in metabolic energy efficiency remains controversial. To address this, this study aimed to test the hypothesis that active arm swing during running reduces both torso angular motion around the longitudinal axis and metabolic energy consumption.</p><p><strong>Methods: </strong>We employed forward dynamics musculoskeletal running simulations with different arm conditions to investigate the hypothesis. Full-body musculoskeletal running models, incorporating 150 muscles, were developed using artificial neural network-based running controllers. Three arm conditions were simulated using the running models and controllers: active arm swing, passive arm swing, and fixed arms.</p><p><strong>Results: </strong>Our results revealed that the active arm swing model demonstrated the lowest total metabolic energy consumption per traveling distance. The costs of transport were 5.52, 5.73, and 5.82 J/kg-m for active, passive, and fixed arm models, respectively. Interestingly, while metabolic energy consumption in the upper limb muscles was higher during active arm swing, the total energy consumption was lower. Additionally, the longitudinal rotation of the torso was minimal in the active arm swing condition.</p><p><strong>Conclusion: </strong>These findings support our hypothesis, demonstrating that active arm swing during running reduces the angular motion of the torso and the metabolic energy consumption. This study provides evidence that arm swing during running is performed actively as an energy-saving mechanism. These results contribute to understanding of running biomechanics and may have implications for performance optimization in sports and rehabilitation settings.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}