Diffusion Model-Based Design of Bionic Bone Scaffolds with Tunable Microstructures.

IF 5.4 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Jiading Chen, Shuwei Shen, Liang Xu, Zhiyuan Zheng, Xiaoyan Zou, Min Ye, Chi Zhang, Honghong Liu, Peng Yao, Ronald X Xu
{"title":"Diffusion Model-Based Design of Bionic Bone Scaffolds with Tunable Microstructures.","authors":"Jiading Chen, Shuwei Shen, Liang Xu, Zhiyuan Zheng, Xiaoyan Zou, Min Ye, Chi Zhang, Honghong Liu, Peng Yao, Ronald X Xu","doi":"10.1007/s10439-025-03847-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In the clinical treatment of bone defects that exceed the critical size threshold, traditional methods using metal fixation devices, autografts, and allografts exhibit significant limitations. Meanwhile, bone scaffolds with minimal risks of secondary injury, low immune rejection are emerging as a promising alternative. The effective design of porosity, pore size, and trabecular thickness in bone scaffolds is critical; however, current strategies often struggle to optimally balance these parameters. Here, we propose a bionic bone scaffold design method that mimics multiple properties of natural cancellous bone using a diffusion model.</p><p><strong>Methods: </strong>First, we develop a classifier-free conditional diffusion model and train it on a Micro-CT (μCT) image dataset of porcine vertebral cancellous bone. The training model can produce personalized 2-dimensional images of natural-like bone with tunable microstructures. Subsequently, we stack images layer by layer to form 3-dimensional scaffolds, mimicking the CT/μCT image reconstruction process. Finally, computational fluid dynamics analysis is conducted to validate the scaffold models' fluid properties, while bioresin bone scaffold samples are 3D-printed for mechanical testing and biocompatibility assessment.</p><p><strong>Results: </strong>The three key morphological parameters of the generated images-porosity (50-70%), pore size (468-936 μm), and trabecular thickness (156-312 μm)-can be precisely and independently controlled. Fluid simulation and mechanical testing confirm scaffolds' robust performance in permeability (10⁻⁹ to 10⁻⁸ m<sup>2</sup>), average fluid shear stress (0.1-0.3 Pa), Young's modulus (14-fold adjustable range), compressive strength (9-fold adjustable range), and viscoelastic properties. The scaffolds also exhibit good biocompatibility, meeting the basic requirements for clinical implantation.</p><p><strong>Conclusion: </strong>These promising results highlight the potential of our method for the personalized design of scaffolds to effectively repair large bone defects.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-025-03847-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: In the clinical treatment of bone defects that exceed the critical size threshold, traditional methods using metal fixation devices, autografts, and allografts exhibit significant limitations. Meanwhile, bone scaffolds with minimal risks of secondary injury, low immune rejection are emerging as a promising alternative. The effective design of porosity, pore size, and trabecular thickness in bone scaffolds is critical; however, current strategies often struggle to optimally balance these parameters. Here, we propose a bionic bone scaffold design method that mimics multiple properties of natural cancellous bone using a diffusion model.

Methods: First, we develop a classifier-free conditional diffusion model and train it on a Micro-CT (μCT) image dataset of porcine vertebral cancellous bone. The training model can produce personalized 2-dimensional images of natural-like bone with tunable microstructures. Subsequently, we stack images layer by layer to form 3-dimensional scaffolds, mimicking the CT/μCT image reconstruction process. Finally, computational fluid dynamics analysis is conducted to validate the scaffold models' fluid properties, while bioresin bone scaffold samples are 3D-printed for mechanical testing and biocompatibility assessment.

Results: The three key morphological parameters of the generated images-porosity (50-70%), pore size (468-936 μm), and trabecular thickness (156-312 μm)-can be precisely and independently controlled. Fluid simulation and mechanical testing confirm scaffolds' robust performance in permeability (10⁻⁹ to 10⁻⁸ m2), average fluid shear stress (0.1-0.3 Pa), Young's modulus (14-fold adjustable range), compressive strength (9-fold adjustable range), and viscoelastic properties. The scaffolds also exhibit good biocompatibility, meeting the basic requirements for clinical implantation.

Conclusion: These promising results highlight the potential of our method for the personalized design of scaffolds to effectively repair large bone defects.

基于扩散模型的微结构可调仿生骨支架设计。
目的:在临床治疗超过临界尺寸阈值的骨缺损时,传统的金属固定装置、自体移植物和同种异体移植物的方法存在明显的局限性。同时,骨支架具有继发性损伤风险小、免疫排斥低的优点,正成为一种有前景的替代材料。有效设计骨支架的孔隙度、孔径和骨小梁厚度至关重要;然而,当前的策略往往难以最佳地平衡这些参数。本文提出了一种利用扩散模型模拟天然松质骨多种特性的仿生骨支架设计方法。方法:首先,建立无分类器的条件扩散模型,并在猪椎体松质骨微ct (Micro-CT)图像数据集上进行训练。该训练模型可以生成具有可调微结构的自然样骨的个性化二维图像。随后,我们将图像逐层叠加,形成三维支架,模拟CT/μCT图像重建过程。最后进行计算流体动力学分析,验证支架模型的流体特性,同时3d打印生物树脂骨支架样品进行力学测试和生物相容性评估。结果:生成图像的孔隙率(50 ~ 70%)、孔径(468 ~ 936 μm)和小梁厚度(156 ~ 312 μm)三个关键形态学参数均可独立精确控制。流体模拟和力学测试证实了支架在渗透性(10⁻⁹至10⁻⁸m2)、平均流体剪切应力(0.1-0.3 Pa)、杨氏模量(14倍可调范围)、抗压强度(9倍可调范围)和粘弹性方面的坚固性能。该支架具有良好的生物相容性,满足临床植入的基本要求。结论:这些有希望的结果突出了我们的方法在个性化支架设计中有效修复大骨缺损的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信