Jiading Chen, Shuwei Shen, Liang Xu, Zhiyuan Zheng, Xiaoyan Zou, Min Ye, Chi Zhang, Honghong Liu, Peng Yao, Ronald X Xu
{"title":"Diffusion Model-Based Design of Bionic Bone Scaffolds with Tunable Microstructures.","authors":"Jiading Chen, Shuwei Shen, Liang Xu, Zhiyuan Zheng, Xiaoyan Zou, Min Ye, Chi Zhang, Honghong Liu, Peng Yao, Ronald X Xu","doi":"10.1007/s10439-025-03847-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In the clinical treatment of bone defects that exceed the critical size threshold, traditional methods using metal fixation devices, autografts, and allografts exhibit significant limitations. Meanwhile, bone scaffolds with minimal risks of secondary injury, low immune rejection are emerging as a promising alternative. The effective design of porosity, pore size, and trabecular thickness in bone scaffolds is critical; however, current strategies often struggle to optimally balance these parameters. Here, we propose a bionic bone scaffold design method that mimics multiple properties of natural cancellous bone using a diffusion model.</p><p><strong>Methods: </strong>First, we develop a classifier-free conditional diffusion model and train it on a Micro-CT (μCT) image dataset of porcine vertebral cancellous bone. The training model can produce personalized 2-dimensional images of natural-like bone with tunable microstructures. Subsequently, we stack images layer by layer to form 3-dimensional scaffolds, mimicking the CT/μCT image reconstruction process. Finally, computational fluid dynamics analysis is conducted to validate the scaffold models' fluid properties, while bioresin bone scaffold samples are 3D-printed for mechanical testing and biocompatibility assessment.</p><p><strong>Results: </strong>The three key morphological parameters of the generated images-porosity (50-70%), pore size (468-936 μm), and trabecular thickness (156-312 μm)-can be precisely and independently controlled. Fluid simulation and mechanical testing confirm scaffolds' robust performance in permeability (10⁻⁹ to 10⁻⁸ m<sup>2</sup>), average fluid shear stress (0.1-0.3 Pa), Young's modulus (14-fold adjustable range), compressive strength (9-fold adjustable range), and viscoelastic properties. The scaffolds also exhibit good biocompatibility, meeting the basic requirements for clinical implantation.</p><p><strong>Conclusion: </strong>These promising results highlight the potential of our method for the personalized design of scaffolds to effectively repair large bone defects.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-025-03847-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In the clinical treatment of bone defects that exceed the critical size threshold, traditional methods using metal fixation devices, autografts, and allografts exhibit significant limitations. Meanwhile, bone scaffolds with minimal risks of secondary injury, low immune rejection are emerging as a promising alternative. The effective design of porosity, pore size, and trabecular thickness in bone scaffolds is critical; however, current strategies often struggle to optimally balance these parameters. Here, we propose a bionic bone scaffold design method that mimics multiple properties of natural cancellous bone using a diffusion model.
Methods: First, we develop a classifier-free conditional diffusion model and train it on a Micro-CT (μCT) image dataset of porcine vertebral cancellous bone. The training model can produce personalized 2-dimensional images of natural-like bone with tunable microstructures. Subsequently, we stack images layer by layer to form 3-dimensional scaffolds, mimicking the CT/μCT image reconstruction process. Finally, computational fluid dynamics analysis is conducted to validate the scaffold models' fluid properties, while bioresin bone scaffold samples are 3D-printed for mechanical testing and biocompatibility assessment.
Results: The three key morphological parameters of the generated images-porosity (50-70%), pore size (468-936 μm), and trabecular thickness (156-312 μm)-can be precisely and independently controlled. Fluid simulation and mechanical testing confirm scaffolds' robust performance in permeability (10⁻⁹ to 10⁻⁸ m2), average fluid shear stress (0.1-0.3 Pa), Young's modulus (14-fold adjustable range), compressive strength (9-fold adjustable range), and viscoelastic properties. The scaffolds also exhibit good biocompatibility, meeting the basic requirements for clinical implantation.
Conclusion: These promising results highlight the potential of our method for the personalized design of scaffolds to effectively repair large bone defects.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.