Samuel Wilcox, Zhefeng Huang, Jay Shah, Xiaofeng Yang, Yue Chen
{"title":"Respiration-Induced Organ Motion Compensation: A Review.","authors":"Samuel Wilcox, Zhefeng Huang, Jay Shah, Xiaofeng Yang, Yue Chen","doi":"10.1007/s10439-024-03630-w","DOIUrl":"https://doi.org/10.1007/s10439-024-03630-w","url":null,"abstract":"<p><strong>Purpose: </strong>Motion of organs in the abdominal and thoracic cavity caused by respiration is a major issue that affects a wide range of clinical diagnoses or treatment outcomes, including radiotherapy, high-intensity focused ultrasound ablation, and many generalized percutaneous needle interventions. These motions pose significant challenges in accurately reaching the target even for the experienced clinician.</p><p><strong>Methods: </strong>This review was conducted through comprehensive search on IEEE Explore, Google Scholar, and PubMed.</p><p><strong>Results: </strong>Diverse methods have been proposed to compensate for this motion effect to enable effective surgical operations. This review paper aims to examine the current respiratory motion compensation techniques used across the clinical procedures of radiotherapy, high-intensity focused ultrasound, and percutaneous needle procedures.</p><p><strong>Conclusion: </strong>The complexity of respiratory-induced organ motion and diversity of areas for which compensation can be applied allows for a variety of methods to be implemented. This review aims to serve as inspiration for the future development of new systems to achieve clinical relevance.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shane Hoang, Mabel Shehada, Konstantinos Karydis, Philip Brisk, William H Grover
{"title":"Controlling Biomedical Devices Using Pneumatic Logic.","authors":"Shane Hoang, Mabel Shehada, Konstantinos Karydis, Philip Brisk, William H Grover","doi":"10.1007/s10439-024-03628-4","DOIUrl":"https://doi.org/10.1007/s10439-024-03628-4","url":null,"abstract":"<p><p>Many biomedical devices are powered and controlled by electrical components. These electronics add to the cost of a device (possibly making the device too expensive for use in resource-limited or point-of-care settings) and can also render the device unsuitable for use in some environments (for example, high-humidity areas such as incubators where condensation could cause electrical short circuits, ovens where electronic components may overheat, or explosive or flammable environments where electric sparks could cause serious accidents). In this work, we show that pneumatic logic can be used to power and control biomedical devices without the need for electricity or electric components. Originally developed for controlling microfluidic \"lab-on-a-chip\" devices, these circuits use microfluidic valves like transistors in air-powered logic \"circuits.\" We show that a modification to the basic valve design-adding additional air channels in parallel through the valve-creates a \"high-flow\" valve that is suitable for controlling a broad range of bioinstruments, not just microfluidics. As a proof-of-concept, we developed a high-flow pneumatic oscillator that uses five high-flow Boolean NOT gates arranged in a loop. Powered by a single constant vacuum source, the oscillator provides five out-of-phase pneumatic outputs that switch between vacuum and atmospheric pressure every 1.3 s. Additionally, a user can adjust the frequency of the oscillator by squeezing a bellows attached to one of the pneumatic outputs. We then used the pneumatic oscillator to power a low-cost 3D-printed laboratory rocker/shaker commonly used to keep blood products, cell cultures, and other heterogeneous samples in suspension. Our air-powered rocker costs around $12 USD to build and performs as well as conventional electronic rockers that cost $1000 USD or more. This is the first of many biomedical devices that can be made cheaper and safer using pneumatic logic.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabel Coll, Matthew P Mavor, Thomas Karakolis, Ryan B Graham, Allison L Clouthier
{"title":"Validation of Markerless Motion Capture for Soldier Movement Patterns Assessment Under Varying Body-Borne Loads.","authors":"Isabel Coll, Matthew P Mavor, Thomas Karakolis, Ryan B Graham, Allison L Clouthier","doi":"10.1007/s10439-024-03622-w","DOIUrl":"https://doi.org/10.1007/s10439-024-03622-w","url":null,"abstract":"<p><p>Field performance of modern soldiers is affected by an increase in body-borne load due to technological advancements related to their armour and equipment. In this project, the Theia3D markerless motion capture system was compared to the marker-based gold standard for capturing movement patterns of participants wearing various body-borne loads. The aim was to estimate lower body joint kinematics, gastrocnemius lateralis and medialis muscle activation patterns, and lower body joint reaction forces from the two motion capture systems. Data were collected on 16 participants performing three repetitions of walking and running under four body-borne load conditions by both motion capture systems simultaneously. A complete musculoskeletal analysis was completed in OpenSim. Strong correlations ( <math><mrow><mtext>r</mtext> <mo>></mo> <mn>0.8</mn></mrow> </math> ) and acceptable differences were observed between the kinematics of the marker-based and markerless systems. Timing of muscle activations of the gastrocnemius lateralis and medialis, as estimated through OpenSim from both systems, agreed with the ones measured using electromyography. Joint reaction force results showed a very strong correlation ( <math><mrow><mtext>r</mtext> <mo>></mo> <mn>0.9</mn></mrow> </math> ) between the systems; however, the markerless model estimated greater joint reaction forces when compared the marker-based model due to differences in muscle recruitment strategy. Overall, this research highlights the potential of markerless motion capture to track participants wearing body-borne loads.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole E.-P. Stark, Mark T. Begonia, Caitlyn Jung, Steven Rowson
{"title":"How Shell Add-On Products Influence Varsity Football Helmet Performance?","authors":"Nicole E.-P. Stark, Mark T. Begonia, Caitlyn Jung, Steven Rowson","doi":"10.1007/s10439-024-03627-5","DOIUrl":"10.1007/s10439-024-03627-5","url":null,"abstract":"<div><h3>Purpose</h3><p>The study purpose was to investigate the laboratory-based performance of three commercially available shell add-on products under varsity-level impact conditions.</p><h3>Methods</h3><p>Pendulum impact tests were conducted at multiple locations (front, front boss, rear, side) and speeds (3.1, 4.9, 6.4 m/s) using two helmet models. Tests were performed with a single add-on configuration for baseline comparisons and a double add-on configuration to simulate collisions with both players wearing shell add-ons. A linear mixed-effect model was used to evaluate peak linear acceleration (PLA), peak rotational acceleration (PRA), and concussion risk, which was calculated from a bivariate injury risk function, based on shell add-on and test configuration.</p><h3>Results</h3><p>All shell add-ons decreased peak head kinematics and injury risk compared to controls, with the Guardian NXT producing the largest reductions (PLA: 7.9%, PRA: 14.1%, Risk: 34.1%) compared to the SAFR Helmet Cover (PLA: 4.5%, PRA: 9.3%, Risk: 24.7%) and Guardian XT (PLA: 3.2%, PRA: 5.0%, Risk: 15.5%). The same trend was observed in the double add-on test configuration. However, the Guardian NXT (PLA: 17.1%; PRA: 11.5%; Risk: 62.8%) and SAFR Helmet Cover (PLA: 12.2%; PRA: 9.1%; Risk: 52.2%) produced larger reductions in peak head kinematics and injury risk than the Guardian XT (PLA: 5.7%, PRA: 2.2%, Risk: 21.8%).</p><h3>Conclusion</h3><p>In laboratory-based assessments that simulated varsity-level impact conditions, the Guardian NXT was associated with larger reductions in PLA, PRA, and injury risk compared to the SAFR Helmet Cover and Guardian XT. Although shell add-ons can enhance head protection, helmet model selection should be prioritized.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 11","pages":"2923 - 2931"},"PeriodicalIF":3.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ophelie M Herve, Will Flanagan, Jake Kanetis, Bailey Mooney, Thomas J Kremen, David R McAllister, Tyler R Clites
{"title":"A Robotic Clamped-Kinematic System to Study Knee Ligament Injury.","authors":"Ophelie M Herve, Will Flanagan, Jake Kanetis, Bailey Mooney, Thomas J Kremen, David R McAllister, Tyler R Clites","doi":"10.1007/s10439-024-03624-8","DOIUrl":"https://doi.org/10.1007/s10439-024-03624-8","url":null,"abstract":"<p><p>Knee ligament injury is among the most common sports injuries and is associated with long recovery periods and low return-to-sport rates. Unfortunately, the mechanics of ligament injury are difficult to study in vivo, and computational studies provide limited insight. The objective of this study was to implement and validate a robotic system capable of reproducing natural six degree-of-freedom clamped-kinematic trajectories on human cadaver knees (meaning that positions and orientations are rigidly controlled and resultant loads are measured). To accomplish this, we leveraged the field's recent access to high-fidelity bone kinematics from dynamic biplanar radiography (DBR), and implemented these kinematics in a coordinate frame built around the knee's natural flexion-extension axis. We assessed our system's capabilities in the context of ACL injury, by moving seven cadaveric knee specimens through kinematics derived from walking, running, drop jump, and ACL injury. We then used robotically simulated clinical stability tests to evaluate the hypothesis that knee stability would be only reduced by the motions intended to injure the knee. Our results show that the structural integrity of the knee was not compromised by non-injurious motions, while the injury motion produced a clinically relevant ACL injury with characteristic anterior and valgus instability. We also demonstrated that our robotic system can provide direct measurements of reaction loads during a variety of motions, and facilitate gross evaluation of ligament failure mechanisms. Clamped-kinematic robotic evaluation of cadaver knees has the potential to deepen understanding of the mechanics of knee ligament injury.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Molecular Mechanism of Macrophages in Response to Mechanical Stress.","authors":"Yuntong Su, Xing Yin","doi":"10.1007/s10439-024-03616-8","DOIUrl":"https://doi.org/10.1007/s10439-024-03616-8","url":null,"abstract":"<p><p>Macrophages, a type of functionally diversified immune cell involved in the progression of many physiologies and pathologies, could be mechanically activated. The physical properties of biomaterials including stiffness and topography have been recognized as exerting a considerable influence on macrophage behaviors, such as adhesion, migration, proliferation, and polarization. Recent articles and reviews on the physical and mechanical cues that regulate the macrophage's behavior are available; however, the underlying mechanism still deserves further investigation. Here, we summarized the molecular mechanism of macrophage behavior through three parts, as follows: (1) mechanosensing on the cell membrane, (2) mechanotransmission by the cytoskeleton, (3) mechanotransduction in the nucleus. Finally, the present challenges in understanding the mechanism were also noted. In this review, we clarified the associated mechanism of the macrophage mechanotransduction pathway which could provide mechanistic insights into the development of treatment for diseases like bone-related diseases as molecular targets become possible.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"\"Publish or Perish\" Paradigm and Medical Research: Replication Crisis in the Context of Artificial Intelligence Trend.","authors":"Obada Al-Leimon, Malik Eid Juweid","doi":"10.1007/s10439-024-03625-7","DOIUrl":"https://doi.org/10.1007/s10439-024-03625-7","url":null,"abstract":"<p><p>The \"publish or perish\" culture in academia has intensified trends in medical research, particularly around artificial intelligence (AI) and machine learning. This letter highlights how the pressure to publish positive findings during research trends, such as artificial intelligence in medicine, exacerbates the replication crisis. Issues like data leakage and lack of cross-institutional validation in AI models, particularly in clinical radiology, raise concerns about their reliability. The letter urges authors, reviewers, and editors to enforce rigorous standards to ensure reproducibility and safeguard the integrity of medical research.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oocytes Vitrification Using Automated Equipment Based on Microfluidic Chip.","authors":"Jing Shen, Zixuan Yu, Weijie Li, Xinli Zhou","doi":"10.1007/s10439-024-03623-9","DOIUrl":"https://doi.org/10.1007/s10439-024-03623-9","url":null,"abstract":"<p><p>Oocyte vitrification has a wide range of applications in assisted reproduction and fertility preservation. It requires precise cryoprotectant agents (CPAs) loading and removal sequences to alleviate osmotic shock, which requires manual manipulation by an embryologist. In this study, a microfluidic system was developed to facilitate the precise adjustment of the CPA concentration around the oocyte by linear loading and removal of CPA. In addition, the microfluidic-based automated vitrification (MAV) device combines CPA loading/removal process, with vitrification process, thereby achieving automated oocyte vitrification. Oocytes were vitrified by Cryotop/QC manual method and MAV method. The results showed that the survival, cleavage, and blastocyst rates of oocytes were 80.44, 54.17, and 32.95% for the MAV method, which were significantly higher than Cryotop manual method (73.35, 43.73, and 23.67%) (p < 0.05). In MAV, solution injection rate during CPA loading/removal process was designed as a 1-segment, 2-segment, and 4-segment function. Accordingly, three concave loading and convex removal protocols were adopted to vitrify oocytes. Oocytes vitrified using the 4-segment function group exhibited increased survival (86.18%), cleavage (63.29%), and blastocyst (45.58%) rates compared to those vitrified using the 1-segment and 2-segment groups. The oocytes vitrification with the highest concentration of CPA, denoted as VS1-TS1, exhibited the highest survival rate after rewarming (86.18%). In contrast, the VS3-TS3 group, characterized by a CPA concentration half that of VS1-TS1, exhibited lower survival (74.14%) and cleavage (59.31%) rates, but displayed the higher blastocyst rate (50.79%) following oocyte activation. Our study demonstrates potential of the MAV device for oocyte or embryo vitrification.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Reza Yousefi Darestani, Dirk Lange, Ben H Chew, Kenichi Takahata
{"title":"Intelligent Ureteral Stent Placeable via Standard Procedure for Kidney Pressure Telemetry: An Ex-Vivo Study.","authors":"Mohammad Reza Yousefi Darestani, Dirk Lange, Ben H Chew, Kenichi Takahata","doi":"10.1007/s10439-024-03610-0","DOIUrl":"https://doi.org/10.1007/s10439-024-03610-0","url":null,"abstract":"<p><p>This paper reports the first telemetric ureteral stent compatible with common placement procedure, enabling wireless sensing and detection of ureteral obstruction and resultant kidney swelling known as hydronephrosis at an early stage. This sensor-integrated \"intelligent\" ureteral stent is prototyped via the design and fabrication approaches that raise the practicality of the device and tested in a harvested swine kidney-ureter model ex vivo. Leveraging a polymeric double-J stent and micro-electro-mechanical systems technology, the intelligent stent is built by embedding micro pressure sensors and a radiofrequency antenna, forming a resonant circuit that enables wireless kidney pressure monitoring in an operating frequency of 40-50 MHz. The stent device is entirely packaged with Parylene-C for both biocompatibility and electrical insulation of the device in order to function in the real environment including urine, an electrically conductive liquid. A comparison between the results measured in in-vitro and ex-vivo settings show a good match in the sensitivity to applied pressure. In particular, the ex-vivo test in the kidney-ureter model pressurized with artificial urine in a cycled manner demonstrates wireless pressure tracking with a response of 1.3 kHz/mmHg, over pressures up to 37 mmHg that well covers a range of pressure increase known for chronic obstruction. This testing is enabled by the prototype placement into the ex-vivo model using the standard stenting technique and tools without noticeable functional degradation or failures, showing potential compatibility of the device with today's clinical need as a ureteral stent.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajinkya A Rai, Clarissa M LeVasseur, Gillian E Kane, Maria A Munsch, Christopher J Como, Alexandra S Gabrielli, Jonathan D Hughes, William J Anderst, Albert Lin
{"title":"Surgical Parameters During Reverse Shoulder Arthroplasty Predict Post-Surgical Kinematics During the Hand-to-Head Motion.","authors":"Ajinkya A Rai, Clarissa M LeVasseur, Gillian E Kane, Maria A Munsch, Christopher J Como, Alexandra S Gabrielli, Jonathan D Hughes, William J Anderst, Albert Lin","doi":"10.1007/s10439-024-03621-x","DOIUrl":"https://doi.org/10.1007/s10439-024-03621-x","url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to identify surgical parameters during reverse shoulder arthroplasty (RSA) that predict post-surgical kinematics during the hand-to-head motion (H2H) and to identify associations between kinematics and outcomes. We hypothesized that greater humeral retroversion and lateralization predict kinematics, and that more scapular upward rotation is associated with better PROs and more range of motion (ROM).</p><p><strong>Methods: </strong>Thirty-five post-RSA patients consented to participate. All surgical parameters were recorded while operating or measured on CT. Participants performed H2H while synchronized biplane radiographs were collected at 50 images/second. Digitally reconstructed radiographs were matched to biplane radiographs to determine glenohumeral and scapular kinematics. For all rotations, the contribution, end position, peak angles, and ROM were calculated. Contact path between the glenosphere and polyethylene insert was calculated. Patient-reported outcomes (PROs), clinical ROM, and strength were measured. Multiple linear regression identified surgical parameters that predicted kinematics, and Pearson correlation identified associations between kinematics and outcomes.</p><p><strong>Results: </strong>Less humeral retroversion predicted greater peak abduction (p = 0.035). Humeral neck-shaft angle, retroversion, and glenoid tilt predicted the peak posterior contact path (p = 0.012). Better PROs were associated with more superior contact path (p < 0.001), more abduction (p < 0.001), and greater peak scapular upward rotation (p = 0.017). Greater strength was correlated with more peak external rotation (p = 0.035). Greater external rotation at 90º was associated with more abduction (p = 0.008) and upward scapula rotation ROM (p = 0.015) during H2H.</p><p><strong>Conclusion: </strong>Less humeral retroversion predicted kinematics during H2H that were associated with more favorable PROs and clinical outcomes.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}