Shun Yao, Oliver W Chung, Ling Wang, Zz Zhao Zhang
{"title":"Extrachromosomal Circular DNA: A Mobile Genetic Element Shaping Host Biology.","authors":"Shun Yao, Oliver W Chung, Ling Wang, Zz Zhao Zhang","doi":"10.1146/annurev-cellbio-101323-124454","DOIUrl":"10.1146/annurev-cellbio-101323-124454","url":null,"abstract":"<p><p>DNA carries genetic information, ensuring the stable transmission of genetic material through generations. However, DNA sequences can be constantly rewritten, allowing evolution and adaptation to occur at both the cellular and species levels. To facilitate this dynamic process, the genome is enriched with mobile genetic elements that can move within DNA sequences. While transposable elements are the classic example of mobile DNA, we propose that extrachromosomal circular DNA (ecDNA) represents another class of mobile genetic elements. This class can also introduce a new layer of genome dynamics, significantly shaping host biology. This review traces the historical discoveries and conceptual evolution of ecDNA, categorizing its diverse forms across organisms and highlighting its life cycle from biogenesis to maintenance and clearance. We discuss ecDNA's pivotal roles in physiological processes, including development, stress adaptation, and species evolution, and emphasize its pathological significance in cancer progression, drug resistance, and viral infections. Finally, we explore therapeutic strategies targeting ecDNA biology, offering a framework for translational advances in oncology and antiviral treatment. Together, these insights position ecDNA as a critical force in shaping genome dynamics and as a promising target for future biomedical interventions.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"553-578"},"PeriodicalIF":11.4,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144788092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Developmental Origins of Behavioral Individuality.","authors":"Benjamin L de Bivort","doi":"10.1146/annurev-cellbio-101323-025423","DOIUrl":"10.1146/annurev-cellbio-101323-025423","url":null,"abstract":"<p><p>Every individual animal behaves differently, even if they have the same genome and have been raised in the same environment. This diversity in behavior challenges the notion that biological variation derives solely from differences in genetics and environment, and poses the question of what biological processes generate individuality. At very small scales, the dynamics of biological matter are essentially impossible to predict with certainty, and these stochastic fluctuations can ripple out to alter the metabolism, physiology, and behavior of cells and organisms. I review major findings related to the developmental origins of stochastic individuality. These include the multivariate, dynamic organization of individual behavioral differences; control of the extent of individuality by genes, neural activity, and neuromodulation; nanoscale features of neural circuits that predict behavioral biases at the individual level; and experimental and theoretical evidence that behavioral variability may reflect an adaptive bet-hedging strategy. I conclude with a brief discussion of how large datasets like connectomes and long-term behavioral recordings will inform our understanding of the mechanisms underpinning behavioral individuality.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"331-352"},"PeriodicalIF":11.4,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144245882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein Storage in Oocytes: Implications for Oocyte Quality, Embryonic Development, and Female Fertility.","authors":"Ida Marie Astad Jentoft, Melina Schuh","doi":"10.1146/annurev-cellbio-101323-031045","DOIUrl":"10.1146/annurev-cellbio-101323-031045","url":null,"abstract":"<p><p>Maternal storage is a fundamental feature of female gametes and is essential for maintaining oocyte quality and preserving developmental competence. Embryonic development relies on maternally deposited proteins, transcripts, and nutrients, yet the mechanisms by which oocytes accumulate and store these critical factors-particularly proteins-remain poorly understood. Across eukaryotes, diverse protein storage strategies have evolved, reflecting both conserved and species-specific adaptations. Here, we review the mechanisms of oocyte protein storage, comparing different species to uncover functional similarities and differences. Additionally, germ cells must clear damaged molecules accumulated during the mother's lifetime to ensure the production of rejuvenated eggs. We examine the conserved proteostasis mechanisms that support this process. By integrating insights from various model organisms and cellular dormancy studies, this review highlights the molecular basis of oocyte protein storage and its vital role in reproductive success.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"15-43"},"PeriodicalIF":11.4,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144844083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Cezanne, Sherman Foo, Yin-Wei Kuo, Buzz Baum
{"title":"The Archaeal Cell Cycle.","authors":"Alice Cezanne, Sherman Foo, Yin-Wei Kuo, Buzz Baum","doi":"10.1146/annurev-cellbio-111822-120242","DOIUrl":"10.1146/annurev-cellbio-111822-120242","url":null,"abstract":"<p><p>Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"1-23"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lipid Droplets Big and Small: Basic Mechanisms That Make Them All.","authors":"Robin W Klemm, Pedro Carvalho","doi":"10.1146/annurev-cellbio-012624-031419","DOIUrl":"10.1146/annurev-cellbio-012624-031419","url":null,"abstract":"<p><p>Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"40 1","pages":"143-168"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling.","authors":"Mikhail Lebedin, Kathrin de la Rosa","doi":"10.1146/annurev-cellbio-112122-030835","DOIUrl":"10.1146/annurev-cellbio-112122-030835","url":null,"abstract":"<p><p>Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (<i>LAIR1</i>) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (<i>LILRB1</i>) gene that is located in close proximity to <i>LAIR1</i>. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"40 1","pages":"265-281"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Byron Rusnak, Frances K Clark, Batthula Vijaya Lakshmi Vadde, Adrienne H K Roeder
{"title":"What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated.","authors":"Byron Rusnak, Frances K Clark, Batthula Vijaya Lakshmi Vadde, Adrienne H K Roeder","doi":"10.1146/annurev-cellbio-111323-102412","DOIUrl":"10.1146/annurev-cellbio-111323-102412","url":null,"abstract":"<p><p>One of the fundamental questions in developmental biology is how a cell is specified to differentiate as a specialized cell type. Traditionally, plant cell types were defined based on their function, location, morphology, and lineage. Currently, in the age of single-cell biology, researchers typically attempt to assign plant cells to cell types by clustering them based on their transcriptomes. However, because cells are dynamic entities that progress through the cell cycle and respond to signals, the transcriptome also reflects the state of the cell at a particular moment in time, raising questions about how to define a cell type. We suggest that these complexities and dynamics of cell states are of interest and further consider the roles signaling, stochasticity, cell cycle, and mechanical forces play in plant cell fate specification. Once established, cell identity must also be maintained. With the wealth of single-cell data coming out, the field is poised to elucidate both the complexity and dynamics of cell states.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"301-328"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection.","authors":"Agnel Sfeir, Marcel Tijsterman, Mitch McVey","doi":"10.1146/annurev-cellbio-111822-014426","DOIUrl":"10.1146/annurev-cellbio-111822-014426","url":null,"abstract":"<p><p>The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"195-218"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organ Evolution: Emergence of Multicellular Function.","authors":"Joseph Parker","doi":"10.1146/annurev-cellbio-111822-121620","DOIUrl":"10.1146/annurev-cellbio-111822-121620","url":null,"abstract":"<p><p>Instances of multicellularity across the tree of life have fostered the evolution of complex organs composed of distinct cell types that cooperate, producing emergent biological functions. How organs originate is a fundamental evolutionary problem that has eluded deep mechanistic and conceptual understanding. Here I propose a cell- to organ-level transitions framework, whereby cooperative division of labor originates and becomes entrenched between cell types through a process of functional niche creation, cell-type subfunctionalization, and irreversible ratcheting of cell interdependencies. Comprehending this transition hinges on explaining how these processes unfold molecularly in evolving populations. Recent single-cell transcriptomic studies and analyses of terminal fate specification indicate that cellular functions are conferred by modular gene expression programs. These discrete components of functional variation may be deployed or combined within cells to introduce new properties into multicellular niches, or partitioned across cells to establish division of labor. Tracing gene expression program evolution at the level of single cells in populations may reveal transitions toward organ complexity.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"51-74"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification.","authors":"Jenks Hehmeyer, Flora Plessier, Heather Marlow","doi":"10.1146/annurev-cellbio-111822-124041","DOIUrl":"10.1146/annurev-cellbio-111822-124041","url":null,"abstract":"<p><p>In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"407-425"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}