古细胞周期

IF 11.4 1区 生物学 Q1 CELL BIOLOGY
Alice Cezanne, Sherman Foo, Yin-Wei Kuo, Buzz Baum
{"title":"古细胞周期","authors":"Alice Cezanne, Sherman Foo, Yin-Wei Kuo, Buzz Baum","doi":"10.1146/annurev-cellbio-111822-120242","DOIUrl":null,"url":null,"abstract":"<p><p>Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"1-23"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Archaeal Cell Cycle.\",\"authors\":\"Alice Cezanne, Sherman Foo, Yin-Wei Kuo, Buzz Baum\",\"doi\":\"10.1146/annurev-cellbio-111822-120242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.</p>\",\"PeriodicalId\":7944,\"journal\":{\"name\":\"Annual review of cell and developmental biology\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of cell and developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cellbio-111822-120242\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-111822-120242","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自 20 世纪 70 年代首次被确定为一个独立的生命领域以来,古细菌与真核生物和细菌之间的深刻差异已变得非常明显。在这篇综述中,我们将纵观古菌领域,讨论古菌控制细胞周期进展、DNA 复制和细胞分裂的各种机制。虽然古细菌用于控制这些关键细胞生物学过程的分子和细胞过程往往与细菌和真核生物所描述的过程明显不同,但也有惊人的相似之处,突出了不同生命领域细胞周期控制的独特和共同原则。由于大部分真核细胞周期机制都起源于古细菌,因此探索古细菌细胞分裂的机制也有望揭示真核细胞周期的进化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Archaeal Cell Cycle.

Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信