{"title":"Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with <i>FecB<sup>++</sup></i> genotype.","authors":"Cheng Chang, Xiaoyun He, Ran Di, Xiangyu Wang, Miaoceng Han, Chen Liang, Mingxing Chu","doi":"10.1080/10495398.2023.2254568","DOIUrl":"10.1080/10495398.2023.2254568","url":null,"abstract":"<p><p>The thyroid gland is an important endocrine gland in animals, which mainly secretes thyroid hormones and acts on various organs of the body. Long-chain non-coding RNA (lncRNA) plays an important role in animal reproduction. However, there is still a lack of understanding of their expression patterns and potential roles in the thyroid of Small Tail Han (STH) sheep. In this study, RNA-seq was used to examine the transcriptome expression patterns of lncRNAs and mRNAs in the follicular phase (ww_FT) and luteal phase (ww_LT) in <i>FecB<sup>++</sup></i> genotype STH Sheep. A total of 17,217 lncRNAs and 39,112 mRNAs were identified including 96 differentially expressed lncRNAs (DELs) and 1054 differentially expressed mRNAs (DEGs). Functional analysis of genes with significant differences in expression level showed that these genes could be enriched in Ras signalling pathway, hedgehog (HH) signalling pathway, ATP-binding cassette (ABC) transporters and other signalling pathways related to animal reproduction. In addition, through correlation analysis for lncRNA-mRNA co-expression and network construction, we found that LNC_009115 and LNC_005796 trans target NIK-related kinase (<i>NRK</i>) and poly(A)-specific ribonuclease (<i>PARN</i>). LNC_007189 and LNC_002045 trans target progesterone-induced blocking factor 1 (<i>PIBF1</i>), LNC_009013 trans targets small mothers against decapentaplegic (<i>SMAD1</i>) are related to animal reproduction. These genes add new resources for elucidating the regulatory mechanisms of reproduction in sheep with different reproductive cycles of the <i>FecB<sup>++</sup></i> genotype STH sheep.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"2254568"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10194403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of differentially expressed genes and transcripts in the ovary of yak in estrus and anestrus.","authors":"Chongfa Yang, Yahua Yang, Bingzhu Zhao, Enyu Gao, Hao Chen, Yang Li, Junyuan Ma, Jine Wang, Songming Hu, Xiaochen Song, Ying Chen, Gengsacairang Yang, Shengdong Huo, Wenxue Luo","doi":"10.1080/10495398.2024.2427757","DOIUrl":"https://doi.org/10.1080/10495398.2024.2427757","url":null,"abstract":"<p><p>Since most yaks have a long postpartum anestrus period, postpartum anestrus is the main factor affecting the reproductive efficiency of yaks. In this study, the third-generation sequencing technology was used to successfully screen differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) in the ovarian tissues of yaks during estrus and anestrus. The functional references of DEGs and DETs were Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Genes database. A total of 1149 DEGs and 2294 DETs were successfully identified. These DEGs and DETs were mainly related to biological processes such as \"reproduction\", \"reproductive process\", \"metabolic process\" and \"rhythmic process\". Kisspeptin-G protein-coupled receptor was found to be involved in regulating the reproductive cycle of yaks. DEGs and DETs were also related to gonadotropin-releasing hormone (GnRH) signaling pathways such as oocyte meiosis, estrogen signaling pathway, and progesterone-mediated induced oocyte maturation. The results showed that <i>SIRT1</i>, <i>CSNK1A1</i>, <i>SLIT3</i>, <i>INHBA</i>, <i>INSL3</i>, <i>ZP2</i>, <i>Clock</i>, <i>BMP15</i>, <i>Bmal1</i>, <i>KISS1</i>, and <i>LCHGR</i> regulate the postpartum quiescent state and the reproductive cycle of yaks. This study will help to further clarify the reproductive mechanism of yaks at the molecular level and provide certain assistance for the development of animal husbandry.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"35 1","pages":"2427757"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal BiotechnologyPub Date : 2024-11-01Epub Date: 2024-11-10DOI: 10.1080/10495398.2024.2422316
Mònica Ferrer-Roda, Ana Gil, Maria-Teresa Paramio, Dolors Izquierdo
{"title":"Effect of biphasic in vitro maturation (CAPA-IVM) on EGF receptor and embryo development of prepubertal goat oocytes according to follicle size.","authors":"Mònica Ferrer-Roda, Ana Gil, Maria-Teresa Paramio, Dolors Izquierdo","doi":"10.1080/10495398.2024.2422316","DOIUrl":"https://doi.org/10.1080/10495398.2024.2422316","url":null,"abstract":"<p><p>Oocytes spontaneously resume meiosis following their liberation from follicles, preventing full competence acquisition. Biphasic IVM (CAPA-IVM) maintains oocytes in meiotic arrest to improve developmental competence, and it specially affects poorly developed oocytes. We assessed the effect of CAPA-IVM on oocytes from small (<3mm) and large (>3mm) follicles of prepubertal goats. Oocytes were cultured for 6h in pre-IVM with C-type natriuretic peptide (CNP) and estradiol as meiotic inhibitors, and germinal vesicle (GV) rate and chromatin configuration were assessed. Then, oocytes were cultured in conventional IVM (c-IVM) or CAPA-IVM (pre-IVM + c-IVM) and EGF receptor (EGFR) protein expression, intra-oocyte ROS and blastocyst development were assessed. GV rate was higher in CNP groups than control (69% vs 28%, and 67% vs 31%, small and large follicles, respectively), but GV chromatin configuration was similar. In large follicles, EGFR expression was higher in oocytes and cumulus cells after CAPA-IVM, and ROS levels were lower. In small follicles these differences were not observed. c-IVM and CAPA-IVM produced similar blastocyst rates in small (3.7% vs 2.6%, respectively) and large follicles (8.3% vs 2.5%). Overall, CAPA-IVM enhanced EGFR expression for EGF peptide signalling and antioxidant capacity in oocytes from large follicles but oocytes from small follicles were too immature to benefit from it.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"35 1","pages":"2422316"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Copy number variation of the <i>ZNF679</i> gene in cattle and its association analysis with growth traits.","authors":"Xingya Song, Xinmiao Li, Xian Liu, Zijing Zhang, Xiaoting Ding, Yanan Chai, Zhiming Li, Hongli Wang, Jungang Li, Huifeng Liang, Xiaoyan Sun, Guojie Yang, Zengfang Qi, Fuying Chen, Qiaoting Shi, Eryao Wang, Baorui Ru, Chuzhao Lei, Hong Chen, Wujun Liu, Yongzhen Huang","doi":"10.1080/10495398.2023.2185628","DOIUrl":"10.1080/10495398.2023.2185628","url":null,"abstract":"<p><p>Copy number variation (CNV) is an important member of genetic structural variation that exists widely in animal genomes and is between 50 bp and several Mb in length and widely used in research's of animal genetics and breeding. ZNF679 is an important transcription factor, which has been found association with diseases in the human genome many times. This gene has also been found to be associated with cattle growth traits in previous re-sequencing studies. We tested the CNVs of the <i>ZNF679</i> gene in 809 individuals from 7 Chinese cattle breeds and tested the association between the CNVs and growth traits in 552 individuals from 5 breeds. The results demonstrated the correlation the correlation between the CNVs of the <i>ZNF679</i> gene and some Chinese cattle (QC cattle and XN cattle) growth traits. To sum up, this study indicated that <i>ZNF679</i>-CNVs can be used as a candidate gene for molecular genetic marker-assisted selection breeding for cattle growth traits to contribute to the development of genetic improvement of Chinese cattle.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"4680-4686"},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9382878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal BiotechnologyPub Date : 2023-12-01Epub Date: 2023-04-20DOI: 10.1080/10495398.2023.2200428
Matin Jamei, Ali Asghar Sadeghi, Mohammad Chamani
{"title":"Dose-responses of zinc as zinc-methionine supplements on antioxidant status, hematological parameters, immune response and the expression of <i>IL-4</i> and <i>IL-6</i> genes of ewes in the hot season.","authors":"Matin Jamei, Ali Asghar Sadeghi, Mohammad Chamani","doi":"10.1080/10495398.2023.2200428","DOIUrl":"10.1080/10495398.2023.2200428","url":null,"abstract":"<p><p>This study was implemented to evaluate the effects of different zinc doses as Zinc-Met supplement (Zinpro<sup>®</sup>) on the antioxidant status, blood immune cells, antibody titers, and the expression of <i>IL-4</i> and <i>IL-6</i> genes of ewes in the hot season. In a completely randomized design, 24 ewes were assigned to treatments as follow: 0, 15, 30 and 45 mg/kg zinc as Zinc-Met supplementation for 40 days in region with 40 °C and vaccinated against food-and-mouth disease as an immune challenge at day 30, and then blood samples were collected on day 40. Ewes were fed a basal diet containing 29.9 mg zinc/kg. The highest activity of the antioxidant enzyme and the lowest lipid peroxidation values were found in ewes receiving 30 and 45 mg/kg zinc following a linear trend. The highest lymphocytes count and antibody titers were found in ewes received 30 mg zinc/kg. There were no significant differences among treatments for the relative expression of genes. In overall, zinc supplementation non-significantly up-regulate interleukin-4 and down-regulate interleukin-6. It was concluded that zinc supplementation as Zinc-Met could enhance the antioxidant status and immune response of ewes under heat stress; supplementation of diet with 30 mg zinc/kg (300 mg/kg Zinpro<sup>®</sup>) appeared to be the most effective dose.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"4860-4868"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal BiotechnologyPub Date : 2023-12-01Epub Date: 2023-05-21DOI: 10.1080/10495398.2023.2214601
Mohamed Ahmed Fathi, Shen Dan, Adel Mohamed Abdelsalam, Li Chunmei
{"title":"Involvement of glyphosate in disruption of biotransformation P450 enzymes and hepatic lipid metabolism in chicken.","authors":"Mohamed Ahmed Fathi, Shen Dan, Adel Mohamed Abdelsalam, Li Chunmei","doi":"10.1080/10495398.2023.2214601","DOIUrl":"10.1080/10495398.2023.2214601","url":null,"abstract":"<p><p>The current study investigated the potentially harmful consequences of pure glyphosate or Roundup® on CYP family members and lipid metabolism in newly hatched chicks. On the sixth day, 225 fertilized eggs were randomly divided into three treatments: (1) the control group injected with deionized water, (2) the glyphosate group injected with 10 mg pure glyphosate/Kg egg mass and (3) the Roundup group injected 10 mg the active ingredient glyphosate in Roundup®/Kg egg. The results of the study revealed a reduction in hatchability in chicks treated with Roundup<sup>®</sup>. Moreover, change of Lipid concentration in serum and the liver-treated groups. Additionally, increased liver function enzymes and increased oxidative stress in the glyphosate and Roundup<sup>®</sup> groups. Furthermore, liver tissues showed histological changes and several lipid deposits in glyphosate-treated groups. Hepatic CYP1A2 and CYP1A4 expressions were significantly increased (<i>p</i> < .05) after glyphosate exposure, and suppression of CYP1C1 mRNA expression was significant (<i>p</i> < .05) after Roundup<sup>®</sup> exposure. The pro-inflammatory cytokines genes IFN-γ and IL-1β expression were significantly increased (<i>p</i> < .05) after Roundup<sup>®</sup> exposure. In addition, there were significant differences in the levels of expression genes which are related to lipid synthesis or catabolism in the liver. In conclusion, <i>in ovo</i> glyphosate exposure caused disruption of biotransformation, pro-inflammatory and lipid metabolism in chicks.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"4957-4967"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9496016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal BiotechnologyPub Date : 2023-12-01Epub Date: 2022-12-10DOI: 10.1080/10495398.2022.2154221
Ekaterina I Tarasova, Alexey N Frolov, Svyatoslav V Lebedev, Michael N Romanov
{"title":"Landmark native breed of the Orenburg goats: progress in its breeding and genetics and future prospects.","authors":"Ekaterina I Tarasova, Alexey N Frolov, Svyatoslav V Lebedev, Michael N Romanov","doi":"10.1080/10495398.2022.2154221","DOIUrl":"10.1080/10495398.2022.2154221","url":null,"abstract":"<p><p>This paper reviews information about a unique and iconic breed of the Orenburg Oblast, the homeland and the only place where the best herds of Orenburg down-hair goats in Russia are concentrated. Three types of these small ruminant animals are widespread on the territory of the region: Orenburg purebred gray goats, Orenburg purebred white goats, as well as crossbred white goats of F<sub>1</sub> White Don × White Orenburg. Currently, at the farms of the Orenburg region, animals are selected according to their phenotype, with selected traits being color, weight and length of down hair. In recent years, the Orenburg goat breed has become an object of genetic research using various marker systems including immunogenetic, microsatellite, mtDNA and SNP markers. Overall, these studies evidence about the uniqueness of the allele pool in the landmark native breed of the Orenburg goats, which is a complex dynamic genetic system, prioritizing its further in-depth genome research and breeding applications.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"5139-5154"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9556262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal BiotechnologyPub Date : 2023-12-01Epub Date: 2023-03-13DOI: 10.1080/10495398.2023.2184698
Ziwei Guo, Yue Liu, Siyuan Zhan, Jiaxue Cao, Linjie Wang, Jiazhong Guo, Li Li, Hongping Zhang, Tao Zhong
{"title":"Expression patterns and DNA methylation profile of <i>GTL2</i> gene in goats.","authors":"Ziwei Guo, Yue Liu, Siyuan Zhan, Jiaxue Cao, Linjie Wang, Jiazhong Guo, Li Li, Hongping Zhang, Tao Zhong","doi":"10.1080/10495398.2023.2184698","DOIUrl":"10.1080/10495398.2023.2184698","url":null,"abstract":"<p><p>Gene trap locus 2 (<i>GTL2</i>), a long non-coding paternal imprinting gene, participates in various biological processes, including cell proliferation, differentiation, and apoptosis, by regulating the transcription of target mRNA, which is tightly related to the growth of the organic and maintenance of function. In this study, DNA methylation patterns of CpG islands (CGI) of <i>GTL2</i> were explored, and its expression level was quantified in six tissues, rumen epithelium cells, and skeletal muscle cells in goats. <i>GTL2</i> expression levels were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and the methylation model was confirmed by bisulfite-sequencing PCR (BSP). CGI methylation of <i>GTL2</i> indicated a moderate methylation (ranging from 81.42 to 86.83%) in the brain, heart, liver, kidney, lung, and <i>longissimus dorsi. GTL2</i> is most highly expressed in brain tissues, but there is no significant difference in the other five tissues. In addition, in the rumen epithelium cell proliferation, <i>GTL2</i> expression was highest at 60 h, followed by 72 h, and almost unchanged at 12-48 h. In the skeletal muscle cell differentiation, <i>GTL2</i> expression was highest at 0 and 24 h, significantly decreasing at 72 and 128 h. Pearson correlation analysis did not indicate a clear relationship between methylation and <i>GTL2</i> expression levels, suggesting that other regulatory factors may modulate <i>GTL2</i> expression. This study will provide a better understanding of the expression regulation mechanism of genes in the delta-like homolog 1 gene (<i>DLK1</i>)-<i>GTL2</i> domain.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"3617-3625"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9092998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal BiotechnologyPub Date : 2023-12-01Epub Date: 2023-07-10DOI: 10.1080/10495398.2023.2232662
F A Lali, K Anilkumar, Hemanth Potu, Thomas Naicy, T V Aravindakshan
{"title":"Two novel SNPs identified in <i>STAT1</i> gene adjoining a QTL for milk production in Holstein Friesian crossbreds of Kerala.","authors":"F A Lali, K Anilkumar, Hemanth Potu, Thomas Naicy, T V Aravindakshan","doi":"10.1080/10495398.2023.2232662","DOIUrl":"10.1080/10495398.2023.2232662","url":null,"abstract":"<p><p>We analyzed the effect of a single nucleotide polymorphism, g. C3141T in the 3' UTR of Signal transducer and activator of transcription-1 gene (<i>STAT1</i>) on milk production traits in the Holstein Friesian crossbred cattle of Kerala (n = 144) by association analysis and expression study. The population was genotyped by restriction fragment length polymorphism using <i>Pag</i>1. Association study using the General Linear Model-Analysis of Variance revealed that none of the yield or composition traits analyzed were significantly differed. The expression profile of <i>STAT1</i> gene in leucocytes of animals bearing homozygous genotypes was compared by quantitative real time PCR using SYBR green chemistry with and relative expression was not found to be significantly differed. The second stage of the study, the <i>STAT1</i> mRNA spanning 3213 bp was amplified from leucocytes and sequenced (GenBank: MT459802.1). Two novel SNPs were identified; one synonymous mutation in the coding region (g.A1212G) and the other in the 3'UTR (g.T3042C). The novel SNPs might contribute to <i>STAT1</i> gene regulation mediated by alternate spicing or binding sites for regulatory molecules. The results reiterate the importance of extensive studies of <i>STAT1</i> gene variants to substantiate the presence of a quantitative trait loci for dairy traits in the vicinity of <i>STAT1</i> gene.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"3837-3846"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10123110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Association between the cashmere production performance, milk production performance, and body size traits and polymorphism of <i>COL6A5</i> and <i>LOC102181374</i> genes in Liaoning cashmere goats.","authors":"Yu Zhang, Yuting Qin, Ming Gu, Yanan Xu, Xingtang Dou, Di Han, Guangyu Lin, Lingling Wang, Zhanhong Wang, Jiaming Wang, Yinggang Sun, Yanzhi Wu, Rui Chen, Yanjun Qiao, Qiu Zhang, Qian Li, Xiaowei Wang, Zhiguo Xu, Yuyan Cong, Jing Chen, Zeying Wang","doi":"10.1080/10495398.2022.2155177","DOIUrl":"10.1080/10495398.2022.2155177","url":null,"abstract":"<p><p>The purpose of this study was to analyze the relationship between <i>COL6A5</i> (collagen type VI alpha 5 chain) and <i>LOC102181374</i> (alcohol dehydrogenase 1) genes and the production performance of Liaoning cashmere goats by single nucleotide polymorphism (SNP). We have searched for SNP loci of <i>COL6A5</i> and <i>LOC102181374</i> genes through sequence alignment and PCR experiments, and have used SPSS and SHEsis software to analyze production data. We obtained five SNP loci in total, including three SNP loci (G50985A, G51140T, G51175A) in <i>COL6A5</i> gene and two SNP loci (A10067G, T10108C) in <i>LOC102181374</i> gene. The genotypes G50985A (AG), G51140T (GT), G51175A (AA), A10067G (AA), and T10108C (CC) of these loci have certain advantages in improving the production performance of Liaoning cashmere goats. The haplotype combinations that can improve production performance in <i>COL6A5</i> gene were H1H5:AGGGAG, H4H4:GGGGAA, and H4H4:GGGGAA. H3H3:GGCC and H2H4:AGTT were the dominant combinations in <i>LOC102181374</i> gene. At G51175A and A10067G loci, we found that H1H2:AAAG and H1H3:AGAA have dominant effects. These results may provide some support for the molecular breeding of production traits in Liaoning cashmere goats.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"4415-4429"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10355542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}