{"title":"Relationship between the <i>CUBN</i> and the <i>MIA3</i> gene copy number variation and growth traits in different cattle breeds.","authors":"Yue Han, Jiwei Liu, Congcong Zhang, Ming Sun, Xuanyu Li, Hongliang Liu, Shengnan Li, Yongchao Zhu, Ruidong Li, Xiaotong Luo, Yumin Zhao, Jian Wu","doi":"10.1080/10495398.2025.2450355","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variations (CNV) are important genetic variations. The endogenous factors cobalamin receptor (<i>CUBN</i>) and MIA SH3 domain ER-derived factor 3 (<i>MIA3</i>) are associated with bone/muscle development and intramuscular fat deposition. There have been no reports on the effects of <i>CUBN</i> and <i>MIA3</i> CNVs on growth traits of Chinese cattle. This study aimed to determine the correlation between the <i>CUBN</i> and <i>MIA3</i> CNVs and growth traits in Chinese cattle. qRT-PCR was used to detect the distribution of <i>CUBN</i> and <i>MIA3</i> CNV and the expression levels of their mRNA, and correlation analysis was conducted between CNV and growth traits. The <i>CUBN</i> was differentially expressed in different breeds of cattle, and <i>CUBN</i> CNV correlated significantly with body height, hip height, body slanting length, and hip width of Grassland Red cattle (CYH); eye muscle area of Yanbian cattle (YB) and Yan Yellow cattle (YH). <i>MIA3</i> showed no CNV in CYH and YB cattle, and only one deletion type occurred in YH cattle. <i>CUBN</i> and <i>MIA3</i> mRNA have different expression patterns in different cattle breeds and tissues. In conclusion, <i>CUBN</i> CNV is correlated significantly with growth traits in Chinese cattle and is a novel molecular marker that could be exploited in cattle breeding.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2450355"},"PeriodicalIF":1.7000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2025.2450355","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Copy number variations (CNV) are important genetic variations. The endogenous factors cobalamin receptor (CUBN) and MIA SH3 domain ER-derived factor 3 (MIA3) are associated with bone/muscle development and intramuscular fat deposition. There have been no reports on the effects of CUBN and MIA3 CNVs on growth traits of Chinese cattle. This study aimed to determine the correlation between the CUBN and MIA3 CNVs and growth traits in Chinese cattle. qRT-PCR was used to detect the distribution of CUBN and MIA3 CNV and the expression levels of their mRNA, and correlation analysis was conducted between CNV and growth traits. The CUBN was differentially expressed in different breeds of cattle, and CUBN CNV correlated significantly with body height, hip height, body slanting length, and hip width of Grassland Red cattle (CYH); eye muscle area of Yanbian cattle (YB) and Yan Yellow cattle (YH). MIA3 showed no CNV in CYH and YB cattle, and only one deletion type occurred in YH cattle. CUBN and MIA3 mRNA have different expression patterns in different cattle breeds and tissues. In conclusion, CUBN CNV is correlated significantly with growth traits in Chinese cattle and is a novel molecular marker that could be exploited in cattle breeding.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes