与Vero细胞相比,猪肌肉源性间充质干细胞对奥耶斯基病毒的易感性增强。

IF 1.7 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animal Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-03-20 DOI:10.1080/10495398.2025.2479677
Na-Yeon Gu, Gwang Sik Ryu, Gyu-Nam Park, Ju-Yeon Lee, Yun Sang Cho, Dong-Kun Yang, Hye Jeong Lee
{"title":"与Vero细胞相比,猪肌肉源性间充质干细胞对奥耶斯基病毒的易感性增强。","authors":"Na-Yeon Gu, Gwang Sik Ryu, Gyu-Nam Park, Ju-Yeon Lee, Yun Sang Cho, Dong-Kun Yang, Hye Jeong Lee","doi":"10.1080/10495398.2025.2479677","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) can self-renew and differentiate into several lineages and can be isolated from different tissues such as bone marrow, adipose tissue, umbilical cord blood, and muscle. Herein, we established MSCs derived from miniature pig muscle (MpMu-MSCs) and assessed their response to Aujeszky's virus. We characterized the MpMu-MSCs based on their cellular morphology, proliferation properties, cell surface marker expression, and mesodermal differentiation potential. MpMu-MSCs demonstrated a fibroblast-like spindle shape and formed a homogeneous monolayer. They showed a considerable increase in cell proliferation over 16 passages. The cells expressed surface markers CD29, CD44, CD90, and CD105 and demonstrated mesodermal lineage differentiation capabilities. MpMu-MSCs demonstrated faster cytopathic effects than the Vero cells when infected with Aujeszky's virus. The virus titer in MpMu-MSCs was initiated at 10<sup>1.4</sup> TCID<sub>50</sub>/ml at 12 h post-infection (hpi) and increased to 10<sup>6.6</sup> TCID<sub>50</sub>/ml at 72 hpi. In Vero cells, it was initiated at 10<sup>2.3</sup> TCID<sub>50</sub>/ml at 48 hpi and increased to 10<sup>3.8</sup> TCID<sub>50</sub>/ml at 72 hpi. This study showed that the stem cells procured from miniature pig muscles exhibit MSC characteristics and that the established cells demonstrate higher susceptibility and virus titer to Aujeszky's virus than Vero cells, indicating their potential use in virus research.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2479677"},"PeriodicalIF":1.7000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced susceptibility of porcine muscle-derived mesenchymal stem cells to Aujeszky's virus compared Vero cells.\",\"authors\":\"Na-Yeon Gu, Gwang Sik Ryu, Gyu-Nam Park, Ju-Yeon Lee, Yun Sang Cho, Dong-Kun Yang, Hye Jeong Lee\",\"doi\":\"10.1080/10495398.2025.2479677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSCs) can self-renew and differentiate into several lineages and can be isolated from different tissues such as bone marrow, adipose tissue, umbilical cord blood, and muscle. Herein, we established MSCs derived from miniature pig muscle (MpMu-MSCs) and assessed their response to Aujeszky's virus. We characterized the MpMu-MSCs based on their cellular morphology, proliferation properties, cell surface marker expression, and mesodermal differentiation potential. MpMu-MSCs demonstrated a fibroblast-like spindle shape and formed a homogeneous monolayer. They showed a considerable increase in cell proliferation over 16 passages. The cells expressed surface markers CD29, CD44, CD90, and CD105 and demonstrated mesodermal lineage differentiation capabilities. MpMu-MSCs demonstrated faster cytopathic effects than the Vero cells when infected with Aujeszky's virus. The virus titer in MpMu-MSCs was initiated at 10<sup>1.4</sup> TCID<sub>50</sub>/ml at 12 h post-infection (hpi) and increased to 10<sup>6.6</sup> TCID<sub>50</sub>/ml at 72 hpi. In Vero cells, it was initiated at 10<sup>2.3</sup> TCID<sub>50</sub>/ml at 48 hpi and increased to 10<sup>3.8</sup> TCID<sub>50</sub>/ml at 72 hpi. This study showed that the stem cells procured from miniature pig muscles exhibit MSC characteristics and that the established cells demonstrate higher susceptibility and virus titer to Aujeszky's virus than Vero cells, indicating their potential use in virus research.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\"36 1\",\"pages\":\"2479677\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2025.2479677\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2025.2479677","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

间充质干细胞(MSCs)可以自我更新并分化成几个谱系,可以从骨髓、脂肪组织、脐带血和肌肉等不同组织中分离出来。在此,我们建立了从微型猪肌肉中提取的MSCs (MpMu-MSCs),并评估了它们对Aujeszky病毒的反应。我们根据MpMu-MSCs的细胞形态、增殖特性、细胞表面标记物表达和中胚层分化潜力对其进行了表征。MpMu-MSCs呈成纤维细胞样纺锤形,形成均匀的单层。16次传代后,细胞增殖显著增加。这些细胞表达表面标记CD29、CD44、CD90和CD105,并表现出中胚层谱系分化能力。当感染奥耶斯基病毒时,MpMu-MSCs比Vero细胞表现出更快的细胞病变效应。感染后12 h MpMu-MSCs的病毒滴度为101.4 TCID50/ml (hpi), 72 hpi时升至106.6 TCID50/ml。在Vero细胞中,48 hpi时起始浓度为102.3 TCID50/ml, 72 hpi时升高至103.8 TCID50/ml。该研究表明,从微型猪肌肉中获得的干细胞具有MSC特征,并且所建立的细胞对Aujeszky病毒的易感性和病毒滴度比Vero细胞高,这表明它们在病毒研究中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced susceptibility of porcine muscle-derived mesenchymal stem cells to Aujeszky's virus compared Vero cells.

Mesenchymal stem cells (MSCs) can self-renew and differentiate into several lineages and can be isolated from different tissues such as bone marrow, adipose tissue, umbilical cord blood, and muscle. Herein, we established MSCs derived from miniature pig muscle (MpMu-MSCs) and assessed their response to Aujeszky's virus. We characterized the MpMu-MSCs based on their cellular morphology, proliferation properties, cell surface marker expression, and mesodermal differentiation potential. MpMu-MSCs demonstrated a fibroblast-like spindle shape and formed a homogeneous monolayer. They showed a considerable increase in cell proliferation over 16 passages. The cells expressed surface markers CD29, CD44, CD90, and CD105 and demonstrated mesodermal lineage differentiation capabilities. MpMu-MSCs demonstrated faster cytopathic effects than the Vero cells when infected with Aujeszky's virus. The virus titer in MpMu-MSCs was initiated at 101.4 TCID50/ml at 12 h post-infection (hpi) and increased to 106.6 TCID50/ml at 72 hpi. In Vero cells, it was initiated at 102.3 TCID50/ml at 48 hpi and increased to 103.8 TCID50/ml at 72 hpi. This study showed that the stem cells procured from miniature pig muscles exhibit MSC characteristics and that the established cells demonstrate higher susceptibility and virus titer to Aujeszky's virus than Vero cells, indicating their potential use in virus research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Biotechnology
Animal Biotechnology 工程技术-奶制品与动物科学
CiteScore
2.90
自引率
5.40%
发文量
230
审稿时长
>12 weeks
期刊介绍: Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology. Submissions on the following topics are particularly welcome: - Applied microbiology, immunogenetics and antibiotic resistance - Genome engineering and animal models - Comparative genomics - Gene editing and CRISPRs - Reproductive biotechnologies - Synthetic biology and design of new genomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信