Kristie Jenkins, Daniel Layton, Tamara Gough, Terri O'Neil, Luis Malaver Otega, Ketan Mishra, Kerri Bruce, Kirsten Morris, Terry Wise, Arjun Challagulla, Tim Doran, Andrew Bean
{"title":"通过直接在体内转染原始生殖细胞生产免疫受体敲除鸡。","authors":"Kristie Jenkins, Daniel Layton, Tamara Gough, Terri O'Neil, Luis Malaver Otega, Ketan Mishra, Kerri Bruce, Kirsten Morris, Terry Wise, Arjun Challagulla, Tim Doran, Andrew Bean","doi":"10.1080/10495398.2025.2523027","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of genetic engineering in chickens has enabled significant advancement in developmental biology, bioreactors, and disease resilience. The development of CRISPR/Cas9 genome engineering technology has further expanded the potential applications of genetic engineering in poultry. In this study we aimed to evaluate the efficacy of a direct <i>in vivo</i> transfection method, previously demonstrated to produce transgenic chickens, in generating gene knockout (KO) chickens. Specifically, we targeted the Interferon-α/β Receptor 1 (IFNAR1) and Interleukin 1 receptor, type I (IL1R1), both critical pathways in the inflammatory and antiviral responses. We designed guide RNAs targeting the genes and validated their efficiency <i>in</i> vivo via microinjection into the developing embryos. PCR analysis confirmed the presence of gene deletions in chimeric roosters, which were subsequently bred to produce G1 germline heterozygote KO offspring. Homozygous KO chickens were generated and subjected to phenotypic and functional analyses. Our results demonstrated successful generation of functional knockouts of both IFNAR1 and IL1R1 using a direct <i>in vivo</i> transfection. Overall, this study demonstrates that direct <i>in vivo</i> transfection provides a robust and predictable method for generating KO chickens, facilitating further research into avian immune responses and the development of antiviral strategies.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2523027"},"PeriodicalIF":1.7000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of immune receptor knockout chickens via direct <i>in vivo</i> transfection of primordial germ cells.\",\"authors\":\"Kristie Jenkins, Daniel Layton, Tamara Gough, Terri O'Neil, Luis Malaver Otega, Ketan Mishra, Kerri Bruce, Kirsten Morris, Terry Wise, Arjun Challagulla, Tim Doran, Andrew Bean\",\"doi\":\"10.1080/10495398.2025.2523027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancement of genetic engineering in chickens has enabled significant advancement in developmental biology, bioreactors, and disease resilience. The development of CRISPR/Cas9 genome engineering technology has further expanded the potential applications of genetic engineering in poultry. In this study we aimed to evaluate the efficacy of a direct <i>in vivo</i> transfection method, previously demonstrated to produce transgenic chickens, in generating gene knockout (KO) chickens. Specifically, we targeted the Interferon-α/β Receptor 1 (IFNAR1) and Interleukin 1 receptor, type I (IL1R1), both critical pathways in the inflammatory and antiviral responses. We designed guide RNAs targeting the genes and validated their efficiency <i>in</i> vivo via microinjection into the developing embryos. PCR analysis confirmed the presence of gene deletions in chimeric roosters, which were subsequently bred to produce G1 germline heterozygote KO offspring. Homozygous KO chickens were generated and subjected to phenotypic and functional analyses. Our results demonstrated successful generation of functional knockouts of both IFNAR1 and IL1R1 using a direct <i>in vivo</i> transfection. Overall, this study demonstrates that direct <i>in vivo</i> transfection provides a robust and predictable method for generating KO chickens, facilitating further research into avian immune responses and the development of antiviral strategies.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\"36 1\",\"pages\":\"2523027\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2025.2523027\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2025.2523027","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Production of immune receptor knockout chickens via direct in vivo transfection of primordial germ cells.
The advancement of genetic engineering in chickens has enabled significant advancement in developmental biology, bioreactors, and disease resilience. The development of CRISPR/Cas9 genome engineering technology has further expanded the potential applications of genetic engineering in poultry. In this study we aimed to evaluate the efficacy of a direct in vivo transfection method, previously demonstrated to produce transgenic chickens, in generating gene knockout (KO) chickens. Specifically, we targeted the Interferon-α/β Receptor 1 (IFNAR1) and Interleukin 1 receptor, type I (IL1R1), both critical pathways in the inflammatory and antiviral responses. We designed guide RNAs targeting the genes and validated their efficiency in vivo via microinjection into the developing embryos. PCR analysis confirmed the presence of gene deletions in chimeric roosters, which were subsequently bred to produce G1 germline heterozygote KO offspring. Homozygous KO chickens were generated and subjected to phenotypic and functional analyses. Our results demonstrated successful generation of functional knockouts of both IFNAR1 and IL1R1 using a direct in vivo transfection. Overall, this study demonstrates that direct in vivo transfection provides a robust and predictable method for generating KO chickens, facilitating further research into avian immune responses and the development of antiviral strategies.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes