Kana Magota, Eiji Gotoh, Shota Sakaguchi, Hajime Ikeda, Hiroaki Setoguchi
{"title":"High-intensity light promotes adaptive divergence of photosynthetic traits between sun-exposed and shaded populations in Saxifraga fortunei","authors":"Kana Magota, Eiji Gotoh, Shota Sakaguchi, Hajime Ikeda, Hiroaki Setoguchi","doi":"10.1002/ajb2.16371","DOIUrl":"10.1002/ajb2.16371","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Light is essential for plants, and local populations exhibit adaptive photosynthetic traits depending on their habitats. Although plastic responses in morphological and/or physiological characteristics to different light intensities are well known, adaptive divergence with genetic variation remains to be explored. This study focused on <i>Saxifraga fortunei</i> (Saxifragaceae) growing in sun-exposed and shaded habitats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We measured the leaf anatomical structure and photosynthetic rate of plants grown in their natural habitats and in a common greenhouse (high- and low-intensity light experimental sites). To assess differences in ecophysiological tolerance to high-intensity light between the sun and shade types, we evaluated the level of photoinhibition of photosystem II and the leaf mortality rate under high-intensity light conditions. In addition, population genetic analysis was conducted to investigate phylogenetic origins.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Clear phenotypic differences were found between the sun and shade types despite their recent phylogenetic origin. The leaf anatomical structure and photosynthetic rate showed plastic changes in response to growing conditions. Moreover, the sun type had a well-developed palisade parenchyma and a higher photosynthetic rate, which were genetically fixed, and a lower level of photoinhibition under high-intensity light.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our findings demonstrate that light intensity is a selective pressure that can rapidly promote phenotypic divergence between the sun and shade types. While phenotypic changes in multiple photosynthetic traits were plastic, genetic divergence in specific traits related to adaptation to high-intensity light would be fundamental for ecotypic divergence to different light regimes.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Craig F. Barrett, Matthew C. Pace, Cameron W. Corbett
{"title":"Plastid genome evolution in leafless members of the orchid subfamily Orchidoideae, with a focus on Degranvillea dermaptera","authors":"Craig F. Barrett, Matthew C. Pace, Cameron W. Corbett","doi":"10.1002/ajb2.16370","DOIUrl":"10.1002/ajb2.16370","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of <i>Degranvillea dermaptera</i>, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In <i>Degranvillea</i>, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of <i>Degranvillea</i> within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other “traits” of the plastome among leafless members of orchid subfamily Orchidoideae.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine N. Stahlhut, Deannah G. Neupert, Josie E. Laing, Lydia J. Witt, Jonathan T. Bauer
{"title":"Measuring leaf and root functional traits uncovers multidimensionality of plant responses to arbuscular mycorrhizal fungi","authors":"Katherine N. Stahlhut, Deannah G. Neupert, Josie E. Laing, Lydia J. Witt, Jonathan T. Bauer","doi":"10.1002/ajb2.16369","DOIUrl":"10.1002/ajb2.16369","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>While many studies have measured the aboveground responses of plants to mycorrhizal fungi at a single time point, little is known about how plants respond belowground or across time to mycorrhizal symbiosis. By measuring belowground responses and growth over time in many plant species, we create a more complete picture of how mycorrhizal fungi benefit their hosts.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We grew 26 prairie plant species with and without mycorrhizal fungi and measured 14 functional traits to assess above- and belowground tissue quality and quantity responses and changes in resource allocation. We used function-valued trait (FVT) modeling to characterize changes in species growth rate when colonized.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>While aboveground biomass responses were positive, the response of traits belowground were much more variable. Changes in aboveground biomass accounted for 60.8% of the variation in mycorrhizal responses, supporting the use of aboveground biomass response as the primary response trait. Responses belowground were not associated with aboveground responses and accounted for 18.3% of the variation. Growth responses over time were highly variable across species. Interestingly, none of the measured responses were phylogenetically conserved.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Mycorrhizal fungi increase plant growth in most scenarios, but the effects of these fungi belowground and across time are more complicated. This study highlights how differences in plant allocation priorities might affect how they utilize the benefits from mycorrhizal fungi. Identifying and characterizing these differences is a key step to understanding the effects of mycorrhizal mutualisms on whole plant physiology.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16369","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruce M. Pavlik, Alfonso del Rio, John Bamberg, Lisbeth A. Louderback
{"title":"Evidence for human-caused founder effect in populations of Solanum jamesii at archaeological sites: II. Genetic sequencing establishes ancient transport across the Southwest USA","authors":"Bruce M. Pavlik, Alfonso del Rio, John Bamberg, Lisbeth A. Louderback","doi":"10.1002/ajb2.16365","DOIUrl":"10.1002/ajb2.16365","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The domestication of wild plant species can begin with gathering and transport of propagules by Indigenous peoples. The effect on genomic composition, especially in clonal, self-incompatible perennials would be instantaneous and drastic with respect to new, anthropogenic populations subsequently established. Reductions in genetic diversity and mating capability would be symptomatic and the presence of unique alleles and genetic sequences would reveal the origins and ancestry of populations associated with archaeological sites. The current distribution of the Four Corners potato, <i>Solanum jamesii</i> Torr. in the Southwestern USA, may thus reflect the early stages of a domestication process that began with tuber transport.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Herein genetic sequencing (GBS) data are used to further examine the hypothesis of domestication in this culturally significant species by sampling 25 archaeological and non-archaeological populations.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Archaeological populations from Utah, Colorado and northern Arizona have lower levels of polymorphic loci, unique alleles, and heterozygosity than non-archaeological populations from the Mogollon region of central Arizona and New Mexico. Principle components analysis, Fst values, and structure analysis revealed that genetic relationships among archaeological populations did not correspond to geographic proximity. Populations in Escalante, Utah were related to those on the Mogollon Rim (400 km south) and had multiple origins and significant disjunctions with those populations in Bears Ears, Chaco Canyon, and Mesa Verde sites.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Movement of tubers from the Mogollon region may have occurred many times and in multiple directions during the past, resulting in the complex genetic patterns seen in populations from across the Four Corners region.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo K. Nery, Mayara K. Caddah, Fabian A. Michelangeli, Anselmo Nogueira
{"title":"An evolutionary disruption of the buzz pollination syndrome in neotropical montane plants","authors":"Eduardo K. Nery, Mayara K. Caddah, Fabian A. Michelangeli, Anselmo Nogueira","doi":"10.1002/ajb2.16367","DOIUrl":"10.1002/ajb2.16367","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Under pollinator limitations, specialized pollination syndromes may evolve toward contrasting responses: a generalized syndrome with increased pollinator attraction, pollinator reward, and pollen transfer capacity; or the selfing syndrome with increased self-pollen deposition, but reduced pollinator attraction and pollen transfer capacity. The buzz-pollination syndrome is specialized to explore female vibrating bees as pollinators. However, vibrating bees become less-active pollinators at montane areas of the Atlantic Forest (AF) domain. This study investigated whether the specialized buzz-pollination syndrome would evolve toward an alternative floral syndrome in montane areas of the AF domain, considering a generalized and the selfing syndromes as alternative responses.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We utilized a lineage within the buzz-pollinated <i>Miconia</i> as study system, contrasting floral traits between montane AF-endemic and non-endemic species. We measured and validated floral traits that were proxies for pollinator attraction, reward access, pollen transfer capacity, and self-pollen deposition. We inferred the evolution of floral trait via phylogenetic comparative methods.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>AF-endemic species have selectively evolved greater reward access and more frequently had generalist pollination. Nonetheless, AF-endemic species also have selectively evolved toward lower pollen transfer capacity and greater self pollination. These patterns indicated a complex evolutionary process that has jointly favored a generalized and the selfing syndromes.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The buzz pollination syndrome can undergo an evolutionary disruption in montane areas of the AF domain. This floral syndrome is likely more labile than often assumed, allowing buzz-pollinated plants to reproduce in environments where vibrating bees are less-reliable pollinators.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Souza, Lorena B Valadão-Mendes, Isadora Schulze-Albuquerque, Pedro J Bergamo, Douglas D Souza, Anselmo Nogueira
{"title":"Nitrogen-fixing bacteria boost floral attractiveness in a tropical legume species during nutrient limitation.","authors":"Caroline Souza, Lorena B Valadão-Mendes, Isadora Schulze-Albuquerque, Pedro J Bergamo, Douglas D Souza, Anselmo Nogueira","doi":"10.1002/ajb2.16363","DOIUrl":"https://doi.org/10.1002/ajb2.16363","url":null,"abstract":"<p><strong>Premise: </strong>Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators.</p><p><strong>Methods: </strong>In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant.</p><p><strong>Results: </strong>NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators.</p><p><strong>Conclusions: </strong>Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linking the macroclimatic niche of native lithophytic ferns and their prevalence in urban environments","authors":"Tammo Reichgelt","doi":"10.1002/ajb2.16364","DOIUrl":"10.1002/ajb2.16364","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Vertical surfaces in urban environments represent a potential expansion of niche space for lithophytic fern species. There are, however, few records of differential success rates of fern species in urban environments.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The occurrence rates of 16 lithophytic fern species native to the northeastern USA in 14 biomes, including four urban environments differentiated by percentage of impervious surfaces, were evaluated. In addition, the natural macroclimatic ranges of these species were analyzed to test whether significant differences existed in climatic tolerance between species that occur in urban environments and species that do not.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Three species appear to preferentially occur in urban environments, two species may facultatively occur in urban environments, and the remaining 11 species preferentially occur in nondeveloped rural environments. The natural range of fern species that occur in urban environments had higher summer temperatures than the range of species that do not, whereas other macroclimatic variables, notably winter temperatures and precipitation, were less important or insignificant.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Vertical surfaces in urban environments may represent novel niche space for some native lithophytic fern species in northeastern USA. However, success in this environment depends, in part, on tolerance of the urban heat island effect, especially heating of impervious surfaces in summer.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16364","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Naturally diverse plant communities do not resist invasion by the strong competitor, Microstegium vimineum","authors":"Griffin Lee Williams, J. Stephen Brewer","doi":"10.1002/ajb2.16362","DOIUrl":"10.1002/ajb2.16362","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Theory predicts and empirical studies have shown that ecologically manipulated communities with high species diversity are resistant to invasion, but do these predictions and results hold true when applied to highly competitive invaders in natural communities? Few studies of diversity-mediated invasion resistance have measured both invasion resistance and invader impact in the same study.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We used a two-year field experiment to test: (1) diversity-mediated competitive resistance to patch expansion by the grass, <i>Microstegium vimineum</i>; and (2) the competitive effect of <i>M. vimineum</i> on resident plant diversity. We examined responses of <i>M. vimineum</i> to two native plant density-reduction treatments that had opposite effects on species diversity: (1) reducing species richness via the removal of rare species; and (2) reducing dominance by reducing the density of the dominant resident species. We examined the effects of <i>M. vimineum</i> reduction by pre-emergent herbicide on resident diversity in the second year of the study.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Neither rare species removal nor dominant species reduction significantly increased <i>M. vimineum</i> density (relative growth rate). The pre-emergent herbicide dramatically reduced <i>M. vimineum</i> in year 2 of the study, but not most resident plants, which were perennials and indirectly benefited from the herbicide at a more productive site, presumably due to reduced competition from <i>M. vimineum</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Diversity-mediated resistance did not effectively deter invasion by a highly competitive invader. In the case of <i>M. vimineum</i> and at more productive sites, it would appear that nearly complete removal of this invader is necessary to preserve plant species diversity.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pia Marinček, Étienne Léveillé-Bourret, Ferris Heiduk, Jing Leong, Stéphane M. Bailleul, Martin Volf, Natascha D. Wagner
{"title":"Challenge accepted: Evolutionary lineages versus taxonomic classification of North American shrub willows (Salix)","authors":"Pia Marinček, Étienne Léveillé-Bourret, Ferris Heiduk, Jing Leong, Stéphane M. Bailleul, Martin Volf, Natascha D. Wagner","doi":"10.1002/ajb2.16361","DOIUrl":"10.1002/ajb2.16361","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The huge diversity of <i>Salix</i> subgenus <i>Chamaetia/Vetrix</i> clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16361","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soraya C. M. Leal-Bertioli, Francisco J. de Blas, M. Carolina Chavarro, Charles E. Simpson, José F.M. Valls, Shyam P. Tallury, Márcio C. Moretzsohn, Adriana R. Custodio, H. Thomas Stalker, Guillermo Seijo, David J. Bertioli
{"title":"Relationships of the wild peanut species, section Arachis: A resource for botanical classification, crop improvement, and germplasm management","authors":"Soraya C. M. Leal-Bertioli, Francisco J. de Blas, M. Carolina Chavarro, Charles E. Simpson, José F.M. Valls, Shyam P. Tallury, Márcio C. Moretzsohn, Adriana R. Custodio, H. Thomas Stalker, Guillermo Seijo, David J. Bertioli","doi":"10.1002/ajb2.16357","DOIUrl":"10.1002/ajb2.16357","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section <i>Arachis</i> are particularly important because of their sexual compatibility with the domesticated species, <i>Arachis hypogaea</i>. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Using a high-density array, we genotyped 272 accessions encompassing all diploid species in section <i>Arachis</i>. Detailed relationships between accessions and species were revealed through phylogenetic analyses and interpreted using the expertise of germplasm collectors and curators.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Two main groups were identified: one with A genome species and the other with B, D, F, G, and K genomes. Species groupings generally showed clear boundaries. Structure within groups was informative, for instance, revealing the history of the proto-domesticate <i>A. stenosperma</i>. However, some groupings suggested multiple sibling species. Others were polyphyletic, indicating the need for taxonomic revision. Annual species were better defined than perennial ones, revealing limitations in applying classical and phylogenetic species concepts to the genus<i>.</i> We suggest new species assignments for several accessions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Curated by germplasm collectors and curators, this analysis of species relationships lays the foundation for future species descriptions, classification of unknown accessions, and germplasm use for peanut improvement. It supports the conservation and curation of current germplasm, both critical tasks considering the threats to the genus posed by habitat loss and the current restrictions on new collections and germplasm transfer.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16357","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}