American Journal of Botany最新文献

筛选
英文 中文
The roles of root-nodulating bacterial associations and cyanogenesis in the freezing sensitivities of herbaceous legumes 根瘤菌联合体和氰基生成在草本豆科植物冷冻敏感性中的作用。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-21 DOI: 10.1002/ajb2.16424
Samuel L. Rycroft, Hugh A. L. Henry
{"title":"The roles of root-nodulating bacterial associations and cyanogenesis in the freezing sensitivities of herbaceous legumes","authors":"Samuel L. Rycroft,&nbsp;Hugh A. L. Henry","doi":"10.1002/ajb2.16424","DOIUrl":"10.1002/ajb2.16424","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Reduced snow cover and increasing temperature variability can increase freezing stress for herbaceous plants in northern temperate regions. Legumes have emerged as a plant functional group that is highly sensitive to these changes relative to other herbaceous species in these regions. We explored root-nodulating bacterial associations and cyanogenesis as potential mechanisms explaining this relatively low freezing tolerance of legumes.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>To examine the influence of bacterial associations, we grew four legume species with or without crushed-nodule inoculum at three severities of freezing, and three concentrations of nitrogen to disambiguate the direct benefits of increased nitrogen from the total bacterial effect. We quantified cyanogenesis via hydrogen cyanide production in both true leaves and cotyledons for nine legume species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Root nodulation generally only affected legume survival under low nitrogen, when freezing severity was moderate or low. However, for the frost-surviving plants, the growth advantage provided by nodulation decreased (it was often no longer significant with increasing freezing severity), and greater freezing severity reduced total nodule mass. In contrast, cyanogenesis was only detected in two of the nine species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The diminished performance of nodulated plants in response to freezing could place legumes at a competitive disadvantage and potentially explain their high sensitivity to freezing relative to other herbaceous species in northern temperate regions. Overall, this result has important implications for changes in soil fertility, community composition, and plant productivity in these ecosystems in the context of a changing winter climate.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighing the risks and benefits of flowering early in the spring for the woody perennial Prunus pumila 权衡早春开花对多年生木本植物 Prunus pumila 的风险和益处。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-18 DOI: 10.1002/ajb2.16417
Danielle A. Lake Diver, Jessica A. Savage
{"title":"Weighing the risks and benefits of flowering early in the spring for the woody perennial Prunus pumila","authors":"Danielle A. Lake Diver,&nbsp;Jessica A. Savage","doi":"10.1002/ajb2.16417","DOIUrl":"10.1002/ajb2.16417","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>There are advantages to flowering early in the spring, including greater pollinator fidelity and longer fruit maturation time. But plant phenology has advanced in recent years, making many plants vulnerable to freezing damage from late frosts.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>To determine the costs and benefits of flowering early in the growing season, we exposed <i>Prunus pumila</i> plants to two freezing treatments and a delayed flowering treatment in subsequent years. Data were collected on ovary swelling, fruit production, and pollinator visitation on hand- and open-pollinated plants in all treatments. We also measured tissue damage after freeze events.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Our results suggest that flowering time and temperature affect reproductive success, with fewer fruits produced after hard freezes. The same was not true for light freezes, which had minimal impact on reproduction. Freezing damage to plants after a hard freeze did affect the number of dipteran pollinators but not the overall pollinator visitation rate. Despite the clear impact of freezing temperatures on plant reproduction, flowering early provided an advantage in that reproductive output decreased with delayed flowering.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our findings suggest that <i>Prunus pumila</i> will retain the ability to attract pollinators and produce viable seeds if exposed to false spring conditions that involve a light freeze, but hard freezes may reduce yield by an order of magnitude. Although the advantages to flowering early may outweigh the risk of freezing damage under current conditions, it is possible that flower viability may be constrained under continued climate warming.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 11","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural and anthropogenic factors influence flowering synchrony and reproduction of a dominant plant in an inter-Andean scrub 自然和人为因素影响安第斯山脉间灌丛中一种优势植物的开花同步性和繁殖。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-14 DOI: 10.1002/ajb2.16416
Diego P. Vélez-Mora, Karla Trigueros-Alatorre, David H. Duncan, Pedro F. Quintana-Ascencio
{"title":"Natural and anthropogenic factors influence flowering synchrony and reproduction of a dominant plant in an inter-Andean scrub","authors":"Diego P. Vélez-Mora,&nbsp;Karla Trigueros-Alatorre,&nbsp;David H. Duncan,&nbsp;Pedro F. Quintana-Ascencio","doi":"10.1002/ajb2.16416","DOIUrl":"10.1002/ajb2.16416","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Agriculture expansion, livestock, and global change have transformed biological communities and altered, through aerosols and direct deposition, N:P balance in soils of inter-Andean valleys, potentially affecting flowering phenology of many species and thereby flowering synchrony and plant reproduction.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We evaluated the influence of variation in temperature and moisture along the local elevational gradient and treatments with the addition of N and P and grazing on flowering synchrony and reproduction of <i>Croton</i>, a dominant shrub of the inter-Andean dry scrub. Along the elevational gradient (300 m difference between the lowest and highest site), we set up plots with and without grazing nested with four nutrient treatments: control and addition of N or P alone or combined N + P. We recorded the number of female and male flowers in bloom monthly from September 2017 to August 2019 to calculate flowering synchrony. We assessed fruiting, seed mass, and pre-dispersal seed predation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Higher growing-season soil temperatures, which were negatively associated with local elevation and higher nitrogen availability promoted flowering synchrony of <i>Croton</i>, particularly among larger plants. Greater flowering synchrony, high soil temperatures, and addition of N + P resulted in production of more fruits of <i>Croton</i>, but also intensified pre-dispersal seed predation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Temperature, availability of moisture throughout the elevational gradient, and nutrient manipulation affected flowering synchrony, which subsequently affected production of fruits in <i>Croton</i>. These results emphasize the critical role of current anthropogenic changes in climate and nutrient availability on flowering synchrony and reproduction of <i>Croton</i>, a dominant plant of the inter-Andean scrub.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An early cladoxylopsid with complex vascular architecture: Paracladoxylon kespekianum gen. et sp. nov. from the Lower Devonian (Emsian) of Quebec, Canada 一种具有复杂维管结构的早期蛤龙类:Paracladoxylon kespekianum gen.
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-13 DOI: 10.1002/ajb2.16418
Jessica Chu, Thibault Durieux, Alexandru M. F. Tomescu
{"title":"An early cladoxylopsid with complex vascular architecture: Paracladoxylon kespekianum gen. et sp. nov. from the Lower Devonian (Emsian) of Quebec, Canada","authors":"Jessica Chu,&nbsp;Thibault Durieux,&nbsp;Alexandru M. F. Tomescu","doi":"10.1002/ajb2.16418","DOIUrl":"10.1002/ajb2.16418","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Cladoxylopsids, one of the first lineages with complex organization to rise from the plexus of structurally simple plants that comprised the earliest euphyllophyte floras, are moniliformopsid euphyllophytes. They formed Earth's earliest forests by the Middle Devonian and are thought to have given rise to the equisetopsids and probably some fern lineages. The Lower Devonian (Emsian) Battery Point Formation (Quebec, Canada) contains previously unrecognized cladoxylopsids preserved anatomically. One of these provides new data on structural evolution among euphyllophytes and is described here.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The anatomy and morphology of permineralized axes of the new plant were studied with light and electron microscopy on sections produced using the cellulose acetate peel technique. Morphological comparisons and phylogenetic analysis were used for taxonomic placement of the plant.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The plant represents a new species, <i>Paracladoxylon kespekianum</i> Chu et Tomescu, gen. et sp. nov., that has tracheids with modern-looking bordered pits and the complex cauline vascular architecture characteristic of the genus <i>Cladoxylon</i>. Its dissected ultimate appendages have complex regular taxis and a pattern of vascularization that suggests bilateral symmetry.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p><i>Paracladoxylon kespekianum</i> is one of the largest Early Devonian euphyllophytes, among the oldest representatives of the cladoxylopsid group, and older than any species of the closely related <i>Cladoxylon</i> by at least 35 million years. It is also one of the oldest anatomically preserved representatives of the cladoxylopsid group. Its anatomical organization pushes the rise of complex vascular architecture among moniliformopsid euphyllophytes deeper in time than previously recognized.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutation rate is central to understanding evolution 突变率是理解进化的核心。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-13 DOI: 10.1002/ajb2.16422
Lindell Bromham
{"title":"Mutation rate is central to understanding evolution","authors":"Lindell Bromham","doi":"10.1002/ajb2.16422","DOIUrl":"10.1002/ajb2.16422","url":null,"abstract":"&lt;p&gt;Darwinian evolution relies on mutation as a constant source of variation, yet in evolutionary biology, mutation is often taken for granted, pushed to the background and treated as if it was random and uniform across all genes and all species. Mutation is an essential parameter in many evolutionary models, although often regarded as a “nuisance parameter” rather than the focus of interest—but mutation is a fundamental driver of evolution. Studying how rates and patterns of mutation are shaped by chance and selection is critical for understanding evolution of biodiversity, and has practical consequences for the way we use DNA to understand evolutionary history. Many evolutionary analyses—including genomics, population genetics, and phylogenetics—make simplifying assumptions about mutation rate, and the nature of these assumptions can influence the answers we get (e.g., Ritchie et al., &lt;span&gt;2022&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;Mutation rate is a balancing act, playing out at many different evolutionary levels simultaneously. At the biochemical level, single-base changes to DNA sequences result from replication errors or imperfectly repaired damage. Cells have an impressive arsenal of equipment for repairing damage and correcting errors, but repair must be “paid for” in energy and time, which could otherwise be invested in growth and reproduction (Avila and Lehmann, &lt;span&gt;2023&lt;/span&gt;). Individuals can vary in repair efficiency, or in the amount of energy available to invest in repair, and therefore in their patterns and rates of mutation. On longer timescales, lineage persistence depends on finding a balance between risk of mutation and costs of error correction and repair. Undirected changes to functional sequences are typically more likely to ruin than improve, so mutation is expected to exact a cost in terms of chances of success. If mutation rate is too high, offspring might not reliably inherit their parents’ advantageous traits, yet mutation provides the chance of generating variations that might allow individuals to better survive in a changing environment or have an increased chance of avoiding parasites and predators. If there is too little mutation, evolution grinds to a halt. If there is too much mutation, it runs into the ground, scrambling the hereditary message passed to subsequent generations and overwriting adaptations. The relative risks and benefits of mutation may vary between lineages and depend upon the environment, shifting when a lineage must adapt to changing conditions (Weng et al., &lt;span&gt;2021&lt;/span&gt;). Mutation rates are a balance between the chance of beneficial variation and the risk of destroying key genome functions. This balancing act plays out in individual lives and over evolutionary time.&lt;/p&gt;&lt;p&gt;Mutation rate is governed by the rate at which changes happen to the genome and the rate at which they are repaired, both of which vary among organisms. Considering one universal mutagen—ultraviolet (UV) light—provides a useful illustration","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf mass per area: An investigation into the application of the ubiquitous functional trait from a paleobotanical perspective 单位面积的叶片质量:从古植物学角度研究无处不在的功能特性的应用。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-13 DOI: 10.1002/ajb2.16419
Matthew J. Butrim, Alexander J. Lowe, Ellen D. Currano
{"title":"Leaf mass per area: An investigation into the application of the ubiquitous functional trait from a paleobotanical perspective","authors":"Matthew J. Butrim,&nbsp;Alexander J. Lowe,&nbsp;Ellen D. Currano","doi":"10.1002/ajb2.16419","DOIUrl":"10.1002/ajb2.16419","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Leaf mass per area (LMA) is a widely used functional trait in both neobotanical and paleobotanical research that provides a window into how plants interact with their environment. Paleobotanists have used site-level measures of LMA as a proxy for climate, biome, deciduousness, and community-scale plant strategy, yet many of these relationships have not been grounded in modern data. In this study, we evaluated LMA from the paleobotanical perspective, seeking to add modern context to paleobotanical interpretations and discover what a combined modern and fossil data set can tell us about how LMA can be best applied toward interpreting plant communities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We built a modern data set by pulling plant trait data from the TRY database, and a fossil data set by compiling data from studies that have used the petiole-width proxy for LMA. We then investigated the relationships of species-mean, site-mean, and site-distribution LMA with different climatic, phylogenetic, and physiognomic variables.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that LMA distributions are correlated with climate, site taxonomic composition, and deciduousness. However, the relative contributions of these factors are not distinctive, and ultimately, LMA distributions cannot accurately reconstruct the biome or climate of an individual site.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The correlations that make up the leaf economics spectrum are stronger than the correlations between LMA and climate, phylogeny, morphospace, or depositional environment. Fossil LMA should be understood as the culmination of the influences of these variables rather than as a predictor.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drought response strategies of vascular epiphytes in isolated pasture trees in a Costa Rican tropical montane landscape 哥斯达黎加热带山地景观中孤立牧场树木中的维管附生植物的抗旱策略。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-11 DOI: 10.1002/ajb2.16423
Damon Vaughan, Cameron B. Williams, Nalini Nadkarni, Todd E. Dawson, Danel Draguljic, Rikke Reese Næsborg, Sybil G. Gotsch
{"title":"Drought response strategies of vascular epiphytes in isolated pasture trees in a Costa Rican tropical montane landscape","authors":"Damon Vaughan,&nbsp;Cameron B. Williams,&nbsp;Nalini Nadkarni,&nbsp;Todd E. Dawson,&nbsp;Danel Draguljic,&nbsp;Rikke Reese Næsborg,&nbsp;Sybil G. Gotsch","doi":"10.1002/ajb2.16423","DOIUrl":"10.1002/ajb2.16423","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Vascular epiphytes of tropical montane cloud forests are vulnerable to climate change, particularly as cloud bases elevate and reduce atmospheric inputs to the system. However, studies have generally focused on epiphytes in contiguous forests, with little research being done on epiphytes on isolated pasture trees. We investigated water relations of pasture-tree epiphytes at three sites located below and above the elevation of the average cloud base in Monteverde, Costa Rica.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We measured sap velocity and four microclimate variables in both the dry and wet season of 2018. We also measured functional traits, including pressure volume (PV) curves, predawn/midday water potential, and various lab-based water relations traits. We used linear mixed models to assess the correlation between microclimate and sap velocity in both seasons and ANOVA to assess the variation in PV curve and water potential variables.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The turgor loss point generally increased from the wettest to driest site. However, this trend was driven primarily by the increasing prevalence of leaf succulence at drier sites. Microclimatic variables correlated strongly with sap velocity in the wet season, but low soil moisture availability caused this correlation to break down during the dry season.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our results emphasize the vulnerability of cloud forest epiphytes to rising cloud bases. This vulnerability may be more severe in pasture trees that lack the potential buffer of surrounding forest, but additional research that directly compares the canopy microclimate conditions between forest and pasture trees is needed to confirm this possibility.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of ramet density and herbivory on floral volatile emissions and seed production in Solidago altissima 雄蕊密度和食草动物对 Solidago altissima 的花挥发物排放和种子生产的影响。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-07 DOI: 10.1002/ajb2.16414
Jacob E. Herschberger, Lukasz Ciesla, Christopher R. Stieha, Mônica F. Kersch-Becker
{"title":"Impacts of ramet density and herbivory on floral volatile emissions and seed production in Solidago altissima","authors":"Jacob E. Herschberger,&nbsp;Lukasz Ciesla,&nbsp;Christopher R. Stieha,&nbsp;Mônica F. Kersch-Becker","doi":"10.1002/ajb2.16414","DOIUrl":"10.1002/ajb2.16414","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Plants produce an array of floral olfactory and visual cues to attract pollinators, including volatile organic compounds (VOC), which mediate plant–pollinator interactions and may be influenced by herbivory and neighboring plants. Consequently, these factors may affect plant fitness by disrupting pollination. However, most evidence comes from controlled experiments, limiting our understanding of how VOCs function in natural populations. This study investigated how herbivory and conspecific ramet density influence floral VOC profile, pollination, and seed production in a naturally occurring population of <i>Solidago altissima</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We recorded leaf herbivory and ramet density surrounding one focal ramet in 1-m<sup>2</sup> plots. We collected VOCs from the floral headspace and measured ovary fertilization as a proxy for pollination success and the number of seeds produced by the focal ramet.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Our findings revealed interactive effects between ramet density and herbivory on floral VOC emission, richness, and diversity. Specifically, at lower ramet densities, herbivory did not affect floral volatile emissions. However, in highly dense stands, herbivory suppressed floral volatile emissions. Despite these changes, floral volatiles did not affect pollination and the number of seeds in <i>S. altissima</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our field-based findings underscore the importance of understanding the complex responses of floral VOCs to environmental stressors and their contributions to plant reproduction within natural communities. Our results suggest that while herbivory and ramet density influence floral scent, these changes do not affect reproduction in our study. Ultimately, generalist-pollinated plants like <i>S. altissima</i> might not rely heavily on chemical signaling during pollination.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling subcellular functional traits: Adaptive insights into chloroplast ultrastructure in nonmodel species 揭示亚细胞功能特征:对非模式物种叶绿体超微结构的适应性研究。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-07 DOI: 10.1002/ajb2.16415
Saulo Pireda, Maura Da Cunha
{"title":"Unraveling subcellular functional traits: Adaptive insights into chloroplast ultrastructure in nonmodel species","authors":"Saulo Pireda,&nbsp;Maura Da Cunha","doi":"10.1002/ajb2.16415","DOIUrl":"10.1002/ajb2.16415","url":null,"abstract":"<p>This essay discusses how the ultrastructural changes in chloroplasts, particularly the mechanisms of thylakoid membrane unstacking, help maintain the photosynthetic performance of photosystem II (PSII) under stress conditions. This phenomenon may facilitate the repair of damaged PSII by providing access to the repair machinery. It is argued that this PSII repair mechanism accelerates PSII recovery, optimizing photosynthetic processes in stressed plants. Although some studies demonstrate the relationship between thylakoid membrane unstacking in stress conditions, these studies were developed with model species under controlled conditions. Thus, this essay serves as a validation tool for these previous studies, because it demonstrates that the relationships between ultrastructural changes in chloroplasts and the functioning of PSII are essential acclimative strategies for nonmodel plants to survive the constant edaphoclimatic changes of natural environments. Understanding these subcellular dynamics can significantly inform biologists about the plastic potential of plants, especially in heterogeneous environments. An integrated approach in future studies is necessary, highlighting the importance of exploring plant functional traits at multiple scales, because subcellular characteristics have great potential to understand plant acclimatization.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16415","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population structure and natural selection across a flower color polymorphism in the desert plant Encelia farinosa 沙漠植物 Encelia farinosa 花色多态性的种群结构和自然选择。
IF 2.4 2区 生物学
American Journal of Botany Pub Date : 2024-10-01 DOI: 10.1002/ajb2.16413
Sonal Singhal, Christopher DiVittorio, Chandra Jones, Itzel Ixta, Alexis Widmann, Ivone Giffard-Mena, Felipe Zapata, Adam Roddy
{"title":"Population structure and natural selection across a flower color polymorphism in the desert plant Encelia farinosa","authors":"Sonal Singhal,&nbsp;Christopher DiVittorio,&nbsp;Chandra Jones,&nbsp;Itzel Ixta,&nbsp;Alexis Widmann,&nbsp;Ivone Giffard-Mena,&nbsp;Felipe Zapata,&nbsp;Adam Roddy","doi":"10.1002/ajb2.16413","DOIUrl":"10.1002/ajb2.16413","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Clines—or the geographic sorting of phenotypes across continual space—provide an opportunity to understand the interaction of dispersal, selection, and history in structuring polymorphisms.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>In this study, we combine field-sampling, genetics, climatic analyses, and machine learning to understand a flower color polymorphism in the wide-ranging desert annual <i>Encelia farinosa</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We find evidence for replicated transitions in disk floret color from brown to yellow across spatial scales, with the most prominent cline stretching ~100 km from southwestern United States into México. Because population structure across the cline is minimal, selection is more likely than drift to have an important role in determining cline width.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Given that the cline aligns with a climatic transition but there is no evidence for pollinator preference for flower color, we hypothesize that floret color likely varies as a function of climatic conditions.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 10","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信