{"title":"Microwave irradiation synthesis of CoFe2O4/rGO to activate peroxymonosulfate for the degradation of 2-aminobenzothiazole in water†","authors":"Wei Wei, Shiqian Gao, Feiyue Qian, Chongjun Chen and Youyi Wu","doi":"10.1039/D4EW00459K","DOIUrl":"https://doi.org/10.1039/D4EW00459K","url":null,"abstract":"<p >Reduced graphene oxide modified CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> (CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO) magnetic nanoparticles (MNPs) were synthesized by employing an <em>in situ</em> crystallization microwave irradiation method. The morphology and textural properties of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO were characterized using SEM, TEM, BET/BJH and XPS. GO was reduced to rGO <em>via</em> the thermal catalysis of Co(acac)<small><sub>2</sub></small>, which contributed to expanding the effective microwave absorption bandwidth of carbon-based materials. The lattice stability of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> effectively improved Snoek's limit and protected the catalytic active site distribution of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO nanoparticles. The CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO composites were selected as a heterogeneous catalyst to initiate the activation of peroxymonosulfate (PMS) for the generation of reactive oxygen species (ROS) and degrade 2-aminobenzothiazole (ABT) in a water sample. Under optimal conditions, the coupling of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO and PMS can completely degrade ABT in aqueous solutions within 90 minutes. The effect of inorganic anions, metal cations and humic acid (HA) on the degradation efficiency of ABT was explored. Experimental results showed that the presence of HA and low concentrations of Cu<small><sup>2+</sup></small> enhanced the process performance remarkably, while the addition of NO<small><sub>3</sub></small><small><sup>−</sup></small>, SO<small><sub>4</sub></small><small><sup>2−</sup></small>, Zn<small><sup>2+</sup></small>, Cd<small><sup>2+</sup></small> and high concentrations of Cu<small><sup>2+</sup></small> suppressed the degradation of ABT. Meanwhile, the absence of Cl<small><sup>−</sup></small> and HCO<small><sub>3</sub></small><small><sup>−</sup></small> presented no significant influence on the degradation. Radical quenching experiments indicated that SO<small><sub>4</sub></small><small><sup>−</sup></small>·, ·OH and non-free radicals of <small><sup>1</sup></small>O<small><sub>2</sub></small> were involved in the CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO-PMS system, with the former two being the dominating radical species. A degradation efficiency of 100% was obtained when the proposed method was applied to the degradation of ABT in actual water samples. The CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO catalyst-activated PMS processes offered a reference to eliminate refractory organics in water.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2946-2960"},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of extracellular organic matter (EOM) accumulation on algal proliferation and disinfection by-product precursors during cyclic cultivation†","authors":"Jr-Lin Lin and Fahrudin Sidik","doi":"10.1039/D4EW00207E","DOIUrl":"https://doi.org/10.1039/D4EW00207E","url":null,"abstract":"<p >Algal blooms, driven by nutrient enrichment from nitrogen and phosphorus, pose significant challenges to water treatment processes, particularly due to the accumulation of extracellular organic matter (EOM). This study investigates the impact of EOM accumulation on the growth of <em>Chlorella</em> sp. and <em>Microcystis aeruginosa</em>—during a 36 day cyclic cultivation period, focusing on the effects of bound EOM (bEOM) and dissolved EOM (dEOM) on nutrient uptake and disinfection by-product (DBP) formation. The cultivation period was divided into three phases (R1, R2, and R3), with algal cell counts measured every 4 days using a flow cytometer, while changes in bEOM and dEOM were quantified. Nutrient uptake rates for nitrogen (N) and phosphate (P) were also evaluated per cycle, alongside analysis of critical organic precursors for disinfection by-products (DBPs). Results showed that the N and P uptake rates remained relatively stable for both alga types across all cycles. However, <em>Chlorella</em> sp. cell growth decreased to 20% after the third cycle, whereas <em>M. aeruginosa</em> maintained approximately 80% growth. This significant difference in growth inhibition between <em>Chlorella</em> sp. and <em>M. aeruginosa</em> was closely linked to the rate of bEOM accumulation. <em>M. aeruginosa</em> exhibited a three times faster accumulation rate of bEOM per cell compared to <em>Chlorella</em> sp. after the third cycle, which resulted from fewer remaining nutrients and the significant increase in pH during cyclic culturing. Further analysis revealed that DBPs derived from intracellular organic matter (IOM) were consistently higher than those from dEOM regardless of the cultivation phase. However, the formation potential of trihalomethanes (THMs) and haloacetic acids (HAAs) decreased by approximately 62% and 37%, respectively, for <em>M. aeruginosa</em>, while the formation potential of THMs and HAAs showed a minimal variation for <em>Chlorella</em> sp. In conclusion, bEOM accumulation on the algal cell surface following cultivation significantly impacts phosphate uptake and cell proliferation, particularly in <em>Chlorella</em> sp.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 3024-3034"},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00207e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fe3+ and H2O2 assisted dopamine rapid polymerization on melamine foam to activate PMS for organic pollutant degradation†","authors":"Haoxiang Yan, Jianzheng Zhen and Yuyuan Yao","doi":"10.1039/D4EW00596A","DOIUrl":"https://doi.org/10.1039/D4EW00596A","url":null,"abstract":"<p >Developing a facile preparation method to construct separable and recyclable Fenton-like catalysts holds great significance in the field of environmental remediation. Herein, a rapid dopamine (DA) polymerization strategy to modify melamine foam (MF) was proposed for the construction of bulk foam catalytic materials, which was further utilized for peroxymonosulfate (PMS) activation to degrade organic pollutants. Taking advantage of the chelation between dopamine's catechol group and Fe<small><sup>3+</sup></small>, as well as the oxidative environment provided by H<small><sub>2</sub></small>O<small><sub>2</sub></small>, DA could encapsulate and polymerize on the surface of MF within 2 h to obtain the MF@Fe@PDA catalyst. Detailed experimental results demonstrated that MF@Fe@PDA could efficiently activate PMS to achieve almost 100% removal of bisphenol A (BPA) in 20 min, and the corresponding turnover frequency (TOF) value was one order of magnitude higher than that of the homogeneous (Fe<small><sup>2+</sup></small>, Fe<small><sup>3+</sup></small>) and nanoparticle (Fe<small><sup>0</sup></small>) catalysts. The high activity of the MF@Fe@PDA/PMS system stemmed from the Fe sites and carbonyl group (C<img>O), which could induce the activation of PMS for the rapid generation of singlet oxygen (<small><sup>1</sup></small>O<small><sub>2</sub></small>), sulfate radical (SO<small><sub>4</sub></small>˙<small><sup>−</sup></small>) and hydroxyl radicals (˙OH). Meanwhile, the coexisting bicarbonate ions (HCO<small><sub>3</sub></small><small><sup>−</sup></small>) in the MF@Fe@PDA/PMS system could enhance the generation of <small><sup>1</sup></small>O<small><sub>2</sub></small>, thereby accelerating the degradation of BPA. Moreover, a flow-through system assisted by the bulk MF@Fe@PDA catalyst was constructed for organic pollutant degradation. Overall, these findings may open up new possibilities for developing highly efficient catalysts for wastewater remediation.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2698-2708"},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrafiltration behavior of CuO particles synthesized without and with different surfactants using PAN and PES membranes†","authors":"Olabimpe Genevieve Badru and Ime Akanyeti","doi":"10.1039/D4EW00462K","DOIUrl":"https://doi.org/10.1039/D4EW00462K","url":null,"abstract":"<p >Four different CuO particles were synthesized, with no surfactant (CuO/NS) and with three surfactants: Triton X-100 (CuO/TX100), cetyltrimethylammonium bromide (CuO/CTAB) and sodium dodecyl sulfate (CuO/SDS). The filtration behavior of these particles at different concentrations with two UF membranes (PAN and PES), was studied. More than 99% CuO removal was obtained in all experiments, while the membrane fluxes showed variations. At 50 and 100 mg L<small><sup>−1</sup></small> CuO concentrations, the normalized flux values were either 1.0, indicating no change, or were greater than 1.0, suggesting that the filtration of CuO particles improved the membrane flux. However, at 50 mg L<small><sup>−1</sup></small>, CuO/TX100 showed a significant flux decline for PES by 10%, while at 100 mg L<small><sup>−1</sup></small> a 15% flux decline was observed for CuO/CTAB with PAN. At lower CuO/NS particle concentrations (<50 mg L<small><sup>−1</sup></small>), PAN showed a much larger flux decline of up to 27%, whereas the PES performance was more stable with a maximum decline of 5%. When the Cu<small><sup>2+</sup></small> mass distribution was studied in the membrane system, the copper mass within the membrane for all types of particles was considerably larger for the PAN membrane than for the PES membrane. FT-IR results confirmed the appearance of new functional groups on PAN after the filtration of CuO/NS, indicating a possible interaction between Cu<small><sup>2+</sup></small> and the membrane.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2981-2996"},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Di Capua, Stefano Papirio, Silvio Matassa, Francesco Pirozzi and Giovanni Esposito
{"title":"Phosphorus release from sewage sludge and digestate driven by biological sulfate reduction: effect of feed sulfate concentration and thermal hydrolysis†","authors":"Francesco Di Capua, Stefano Papirio, Silvio Matassa, Francesco Pirozzi and Giovanni Esposito","doi":"10.1039/D4EW00322E","DOIUrl":"https://doi.org/10.1039/D4EW00322E","url":null,"abstract":"<p >Phosphorus recovery from waste streams stands out as a strategic practice to ensure phosphorus availability to future generations. The release of phosphate mediated by biological sulfate reduction is an interesting bioprocess for phosphorus recovery from sewage sludge in wastewater treatment plants in which chemical phosphorus recovery is foreseen. This study investigates the effect of biological sulfate reduction at different feed sulfate concentrations (up to 8000 mg L<small><sup>−1</sup></small>) on the anaerobic phosphate release from both sewage sludge and digestate as well as the impact of sulfate addition on energy recovery from the sludge <em>via</em> biomethane production. During anaerobic digestion, up to 62.3% of the phosphate initially present in the sludge as iron(<small>III</small>) phosphate was released with 8000 mg L<small><sup>−1</sup></small> feed sulfate. However, biomethane production was significantly reduced (>40%) when sulfate was added at concentrations above 100 mg L<small><sup>−1</sup></small>. The use of thermal hydrolysis on the sludge digestate was found to be an effective strategy for phosphorus recovery from the sludge without compromising the biomethane production during anaerobic digestion. A phosphate release from iron(<small>III</small>) phosphate of up to 48.7% was obtained when adding 4000 mg L<small><sup>−1</sup></small> sulfate to the digestate previously hydrolyzed for 2 hours. Finally, the implementation potential of the proposed strategy in full-scale wastewater treatment plants is discussed.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2897-2905"},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00322e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Begmyrat Kulmedov, Lucy Achobe Akaiku and Onyebuchi Nwabueze Mogbo
{"title":"Investigating water quality and preservation strategies in Abuja's distribution system: a Nigerian case study","authors":"Begmyrat Kulmedov, Lucy Achobe Akaiku and Onyebuchi Nwabueze Mogbo","doi":"10.1039/D4EW00613E","DOIUrl":"https://doi.org/10.1039/D4EW00613E","url":null,"abstract":"<p >Abuja, the capital city of Nigeria, primarily sources its drinking water from the Lower Usuma Dam Water Treatment Plant (LUD-WTP). This study aims to investigate the preservation of the physicochemical and biological properties of the treated water as it traverses the distribution network to reach the end consumers. Laboratory analyses indicate that the physicochemical parameters of the water samples comply with the guidelines set by the World Health Organization (WHO) and the Nigerian Standard for Drinking Water Quality (NSDWQ). However, bacteriological examination of samples from areas serviced by the LUD-WTP revealed the presence of <em>E. coli</em>, <em>Enterobacter aerogenes</em>, and <em>Klebsiella</em> bacteria, alongside a lack of residual chlorine. The study subsequently focuses on identifying vulnerabilities in the water distribution system and proposing preventive measures. The findings of this research have significant implications for managing drinking water quality in urban distribution networks, particularly in developing countries.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2869-2881"},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical modeling to size anaerobic stabilization ponds intended for slaughterhouse wastewater treatment – the role of temperature and hydraulic retention time†","authors":"P. E. S. Soldera, R. F. Dantas and E. Fagnani","doi":"10.1039/D4EW00557K","DOIUrl":"https://doi.org/10.1039/D4EW00557K","url":null,"abstract":"<p >Slaughterhouse wastewater treatment is mainly performed using anaerobic stabilization pond systems. Despite some mathematical models for facultative ponds provided in the literature, no guidelines or mathematical equations exist to specifically size anaerobic ponds for this particular type of wastewater. In most cases, empirical knowledge or domestic wastewater treatment criteria are adapted for this purpose. This study proposes a mathematical model based on Bartha and Pramer's classical respirometry adapted to anaerobic conditions. Raw slaughterhouse wastewater was analyzed for biochemical oxygen demand (BOD) removal under steady-state conditions at varying temperatures and contact times. Results showed compatibility between the experimental conditions and data from anaerobic pond systems in operation, enabling the development of a mathematical model capable of correlating hydraulic retention time for BOD removal as a function of temperature. The model was validated using literature and field data, with a standard deviation of up to 7%, and can be used to design anaerobic stabilization pond systems over a wide temperature range (from 10 °C to 35 °C).</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2882-2896"},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive study on the physicochemical characteristics of faecal sludge from septic tank and single pit latrine facilities in a typical semi-urban Indian town: a case study of Rajasthan, India","authors":"Harishvar Jothinathan and Ajit Pratap Singh","doi":"10.1039/D4EW00127C","DOIUrl":"10.1039/D4EW00127C","url":null,"abstract":"<p >Faecal sludge (FS) generated from onsite sanitation (OSS) systems has become a significant pollutant that negatively impacts the environment. Environmental contamination results from the disposal of untreated FS. In semi-urban areas where numerous toilets are linked to OSS systems, such as septic tanks and single pits, faecal sludge management (FSM) becomes crucial to ensure a safe sanitation service chain. Integral to the faecal sludge management framework, treating FS is imperative, ensuring safe disposal and resource recovery. FS characterization plays a significant role in designing FS treatment plants. This case study characterized FS samples of OSS collected from Pilani, Rajasthan, India. The pH, temperature, electrical conductivity, total solids, chemical oxygen demand, faecal coliforms, total nitrogen, total phosphorus, and capillary suction time varied from 4.64 to 7.93, 20.6 to 27.5 °C, 1.857 to 6.315 mS cm<small><sup>−1</sup></small>, 3430 to 95 393.33 mg l<small><sup>−1</sup></small>, 4406 to 160 000 mg l<small><sup>−1</sup></small>, 10<small><sup>3</sup></small> to 10<small><sup>9</sup></small> CFU ml<small><sup>−1</sup></small>, 81.7 to 709.2 mg l<small><sup>−1</sup></small>, 285 to 4471 mg l<small><sup>−1</sup></small>, and 149 to 1256.8 seconds, respectively. The significant factors influencing the key FS characteristic parameter COD are found to be the FS age (<em>p</em> < 0.001) and type of OSS (<em>p</em> = 0.044), and for total solids, the factors affecting are identified as the FS age (<em>p</em> < 0.001), type of OSS (<em>p</em> = 0.002) and greywater dilution (<em>p</em> = 0.011). This case study can assist FSM stakeholders in designing FS treatment plants in Indian semi-urban towns and other developing nations with infrastructure, geographical and demographic factors, sanitation types, and FSM models similar to those in Pilani.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2906-2928"},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00127c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Akbari, Khouloud Abid, Daniela Iannazzo, Morteza Montazerozohori, Enza Fazio, Fortunato Neri, Carmelo Corsaro and Giovanni Neri
{"title":"Lead ion (Pb2+) electrochemical sensors based on novel Schiff base ligands","authors":"Zahra Akbari, Khouloud Abid, Daniela Iannazzo, Morteza Montazerozohori, Enza Fazio, Fortunato Neri, Carmelo Corsaro and Giovanni Neri","doi":"10.1039/D4EW00485J","DOIUrl":"10.1039/D4EW00485J","url":null,"abstract":"<p >In this study, a novel bidentate Schiff base ligand, namely (1<em>E</em>,1′<em>E</em>,2<em>E</em>,2′<em>E</em>)-<em>N</em>,<em>N</em>′-(butane-1,4-diyl)bis(3-(2-methoxyphenyl)prop-2-en-1-imine) (L<small><sup>1</sup></small>), and a tetradentate Schiff base ligand, namely <em>N</em>1,<em>N</em>2-bis(2-(((1<em>E</em>,2<em>E</em>)-3-(4-(dimethylamino)phenyl)allylidene)amino)ethyl)ethane-1,2-diamine (L<small><sup>2</sup></small>), were successfully synthesized through a simple procedure. The synthesized Schiff base ligands were characterized by scanning electron microscopy (SEM) analysis, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-vis) spectroscopy. Moreover, the thermal behavior was studied through thermogravimetric (TG)/differential thermogravimetric (DTG)/differential thermal (DT) analyses under a nitrogen atmosphere. Subsequently, the features and performances of the synthesized ligands (L<small><sup>1</sup></small> and L<small><sup>2</sup></small>) as electrochemical sensors for the detection of heavy metal ions (HMIs) have been investigated. A different behavior was noticed using these two ligands, with L<small><sup>1</sup></small> being the best candidate for developing a modified screen-printed carbon electrode (L<small><sup>1</sup></small>/SPCE) electrochemical Pb<small><sup>2+</sup></small> sensor. To improve further the performances, gold nanoparticles (AuNPs) were deposited by an electrochemical process on the L<small><sup>1</sup></small>/SPCE platform. The developed AuNPs-L<small><sup>1</sup></small>/SPCE sensor displayed enhanced lead ion sensing with a high sensitivity of 56.78 μA μM<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> and a detection limit of 0.298 μM. This novel sensor demonstrated promising performances for the detection of Pb<small><sup>2+</sup></small> ions in real seawater with no sample treatment.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2997-3006"},"PeriodicalIF":3.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00485j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Concurrent boron removal from reverse osmosis concentrate and energy production using a microbial desalination cell-Donnan dialysis hybrid system†","authors":"A. Yagmur Goren and H. Eser Okten","doi":"10.1039/D4EW00621F","DOIUrl":"10.1039/D4EW00621F","url":null,"abstract":"<p >The removal of boron from aqueous solutions offers an important opportunity to improve the management of sustainable resources. In this regard, microbial desalination cells (MDCs) are a promising bioelectrochemical approach for effective water treatment, but the integrated MDC-Donnan Dialysis (DD) process for boron removal from reverse osmosis (RO) concentrated effluents has not been investigated before. Integration of the DD process with MDC is investigated in this paper for the first time to enhance the efficiency of the process by providing pre-treatment and natural pH manipulation. Therefore, the MDC process was evaluated for boron removal from boron-containing synthetic solution, geothermal water, and RO-concentrated effluent with the help of the DD system. The highest boron removal performance, with an efficiency of 72.1% in the desalination chamber and 74.8% in the DD-feed chamber, was obtained for boron-containing synthetic solution, while the COD removal efficiency was almost 90% in all water resources. However, the maximum power density was 4818 mW m<small><sup>−2</sup></small> with a closed circuit voltage of 1317 mV for RO concentrated water treatment due to its high ionic strength. Moreover, the most crucial output of this study is that the pH value of the system did not need to be adjusted continuously to convert the uncharged boric acid into the borate ion in the charged form owing to better manipulation of the pH by the DD system. Overall, the integrated MDC-DD system provided promising results, presenting effective boron-containing water desalination, yeast wastewater treatment, and enhanced energy production.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 12","pages":" 3279-3289"},"PeriodicalIF":3.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}