{"title":"Fouling control of different pretreatments on ceramic fouling ultrafiltration: a review","authors":"Yimu Qiao, Xue Han, Feiyong Chen, Cuizhen Sun, Linxu Xu, Jiaxin Yao, Yaqi Wu, Zhen Qi, Rupeng Liu and Xue Shen","doi":"10.1039/D4EW00440J","DOIUrl":"10.1039/D4EW00440J","url":null,"abstract":"<p >Ceramic ultrafiltration membrane filtration has made great progress in water purification. In terms of operational stability, ceramic ultrafiltration membranes have more obvious advantages than polymer membranes. However, membrane fouling is still a key factor hindering the development of ceramic ultrafiltration membranes. In order to alleviate membrane fouling, relevant pretreatment methods have been paid more and more attention. With the in-depth study of the interaction between filtration and coagulation, oxidation, adsorption and other processes, the combination of different technologies to alleviate membrane fouling and improve water purification efficiency has been recognized. It is necessary to make a comprehensive review on the control of ceramic ultrafiltration membrane fouling by different pretreatment methods. In this paper, the latest progress in the mechanism of ceramic ultrafiltration membrane fouling control by different pretreatments is reviewed, and the effects of the combination of various pretreatment methods are discussed. This study can provide a reference for the development of ceramic ultrafiltration membranes in practical applications.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2273-2281"},"PeriodicalIF":3.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shangzhi Yu, Wenyu Yuan, Jianfeng Bai, Qinglong Xie, Xiaojiang Liang and Yong Nie
{"title":"Catalytic combustion of biodiesel wastewater over the Fe2O3 catalyst coupled with a Pt-based catalyst","authors":"Shangzhi Yu, Wenyu Yuan, Jianfeng Bai, Qinglong Xie, Xiaojiang Liang and Yong Nie","doi":"10.1039/D4EW00259H","DOIUrl":"10.1039/D4EW00259H","url":null,"abstract":"<p >In this paper, biodiesel wastewater was treated by catalytic combustion in the case of catalyst coupling. The effects of reaction temperature, residence time and air flow on the treatment of biodiesel wastewater were investigated using the Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst, the Pt/Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@cordierite catalyst and the Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst coupled with the Pt-based catalyst. The effects of high-temperature hydrothermal treatment on the two catalysts were evaluated. The catalytic stability was studied in continuous catalytic combustion. Detailed characterization of the two catalysts was carried out. The X-ray fluorescence (XRF), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterization demonstrated that the Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst contained a significant amount of surface active oxygen and Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> existed in an amorphous form within the catalyst. The Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst could remove 90.6% of sulfur from wastewater, showing excellent desulfurization performance, but it was not resistant to high temperature. After 500 °C hydrothermal treatment, the chemical oxygen demand (COD) removal rate decreased significantly from 97.98% to 69.04% at the reaction temperature of 280 °C. The COD removal rate of the Pt/Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@cordierite catalyst was almost 100% at the reaction temperature of 320 °C, with the activity being basically unchanged after high-temperature hydrothermal treatment, but sulfur poisoning occurred. The Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst coupled with the Pt/Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@cordierite catalyst showed excellent catalytic activity and stability, and the optimal reaction temperature and residence time were 320 °C and 0.3 s, respectively. In the continuous treatment of biodiesel wastewater with the COD of 99 465 mg L<small><sup>−1</sup></small> for 200 h, the COD and sulfur content of the treated wastewater were less than 400 mg L<small><sup>−1</sup></small> and 1 mg L<small><sup>−1</sup></small>, with the COD removal rate and sulfur removal rate exceeding 99.62% and 81.38%, respectively. In addition, no organic gas or SO<small><sub>2</sub></small> was detected in the exhaust gas generated during the reaction, and the removed organic matter was converted into CO<small><sub>2</sub></small> and H<small><sub>2</sub></small>O.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2366-2380"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Buchner, Johannes Scheckenbach, Philipp R. Martin and Stefan B. Haderlein
{"title":"Does the number of cells of individual strains correlate with their contribution to the total substrate turnover within a microbial community?†","authors":"Daniel Buchner, Johannes Scheckenbach, Philipp R. Martin and Stefan B. Haderlein","doi":"10.1039/D4EW00511B","DOIUrl":"10.1039/D4EW00511B","url":null,"abstract":"<p >The contribution of individual bacterial strains within a mixed microbial community to the overall turnover of a specific compound is often assessed using qPCR data quantifying strain-specific 16S rRNA or functional genes. Here we compare the results of a qPCR based approach with those of compound specific stable isotope analysis (CSIA), which relies on strain-specific magnitudes of kinetic isotope fractionation associated with the biotransformation of a compound. To this end, we performed tetrachloroethylene (PCE) transformation experiments using a synthetic binary culture containing two different <em>Desulfitobacterium</em> strains (<em>Desulfitobacterium hafniense</em> strain Y51; <em>ε</em><small><sub>C,PCE</sub></small> = −5.8‰ and <em>Desulfitobacterium dehalogenans</em> strain PCE1; <em>ε</em><small><sub>C,PCE</sub></small> = −19.7‰). Cell abundances were analyzed <em>via</em> qPCR of functional genes and compared to strain-specific PCE turnover derived <em>via</em> carbon isotope fractionation. Repeated spiking of an initially strain Y51 dominated synthetic binary culture with PCE led to a steadily increasing contribution of strain PCE1 to PCE turnover (<em>ε</em><small><sub>C,initial</sub></small> = −5.6 ± 0.6‰ to <em>ε</em><small><sub>C,final</sub></small> = −18.0 ± 0.6‰) which was not or only weakly reflected in the changes of the cell abundances. The CSIA data further indicate that strain-specific PCE turnover varied by more than 75% at similar cell abundances of the two strains. Thus, the CSIA approach provided new and unexpected insights into the evolution of the metabolic activity of the single strains within a synthetic binary culture and indicates that strain-specific substrate turnover appears to be controlled by physiological and enzymatic properties of the strains rather than their cell abundance.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2466-2477"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00511b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shasha Yang, Luz Estefanny Quispe Cardenas, Athkia Fariha, Nada Shetewi, Victor Melgarejo Cazares, Nanyang Yang, Lewis McCaffrey, Nicole Wright, Michael R. Twiss, Siwen Wang, Stefan J. Grimberg and Yang Yang
{"title":"Emerging investigator series: mitigation of harmful algal blooms by electrochemical ozonation: from bench-scale studies to field applications†","authors":"Shasha Yang, Luz Estefanny Quispe Cardenas, Athkia Fariha, Nada Shetewi, Victor Melgarejo Cazares, Nanyang Yang, Lewis McCaffrey, Nicole Wright, Michael R. Twiss, Siwen Wang, Stefan J. Grimberg and Yang Yang","doi":"10.1039/D4EW00490F","DOIUrl":"10.1039/D4EW00490F","url":null,"abstract":"<p >Harmful algal blooms (HABs) are an emerging threat to ecosystems, drinking water safety, and the recreational industry. As an environmental challenge intertwined with climate change and excessive nutrient discharge, HAB events occur more frequently and irregularly. This dilemma calls for fast-response treatment strategies. This study developed an electrochemical ozonation (ECO) process, which uses Ni–Sb–SnO<small><sub>2</sub></small> anodes to produce locally concentrated ozone (O<small><sub>3</sub></small>) and hydroxyl radicals (·OH) to achieve ∼100% inactivation of cyanobacteria (indicated by chlorophyll-<em>a</em> degradation) and removal of microcystins within 120 seconds. More importantly, the proof-of-concept evolved into a full-scale boat-mounted completely mixed flow reactor for the treatment of HAB-impacted lake water. The single-pass treatment at a capacity of 544 m<small><sup>3</sup></small> d<small><sup>−1</sup></small> achieved 62% chlorophyll-<em>a</em> removal with an energy consumption of <1 Wh L<small><sup>−1</sup></small>. Byproducts (<em>e.g.</em>, chlorate, bromate, trihalomethanes, and haloacetic acids) in the treated lake water were below the regulatory limits for drinking water. The whole effluent toxicity tests suggest that ECO treatment at 10 mA cm<small><sup>−2</sup></small> posed certain chronic toxicity to the model crustacean invertebrate (<em>Ceriodaphnia dubia</em>). However, the treatment at 7 mA cm<small><sup>−2</sup></small> (identified as the optimum condition) did not increase toxicity to model invertebrate and fish (<em>Pimephales promelas</em>) species. This study is a successful example of leveraging fundamental innovations in electrocatalysis to solve real-world problems.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2381-2391"},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto Navarro-Tovar, Patricia Gorgojo, Megan Jobson, Peter Martin and Maria Perez-Page
{"title":"Innovations in water desalination: enhancing air gap membrane distillation performance by the incorporation of clay nanoparticles into PVDF matrix membranes†","authors":"Roberto Navarro-Tovar, Patricia Gorgojo, Megan Jobson, Peter Martin and Maria Perez-Page","doi":"10.1039/D4EW00326H","DOIUrl":"10.1039/D4EW00326H","url":null,"abstract":"<p >This study showcases the remarkable permeate flux rates achieved in water desalination using phase-inversion polyvinylidene difluoride (PVDF) membranes by the incorporation of clay nanoparticles within the polymer matrix, leading to a performance that surpasses that of commercial membranes. These findings hold promising implications for addressing water scarcity issues in various regions around the globe. The study focuses on membrane improvement by incorporating both montmorillonite (MT) and Cloisite 20A (organomontmorillonite, OMT). The permeate flux of the most effective OMT-enhanced membrane (with a 4 wt% loading) surpassed that of the commercial PVDF membrane by 12% and outperformed the pure PVDF membrane by 30% after a 24 hour testing period in air gap membrane distillation (AGMD), with rejection values exceeding 99.8%. Moreover, this membrane exhibited stability over 5 days of continuous testing, proving better performance than commercial PVDF membranes when exposed to a concentrated fouling humic acid solution. This fouling test experienced a 40% reduction in permeate flux compared to the 60% decline observed in the commercial PVDF membrane. These enhancements are attributed to increased surface porosity, higher liquid entry pressure, smaller mean pore size, and a uniform distribution of clay particles within the membrane matrix.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2418-2431"},"PeriodicalIF":3.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00326h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhikun Chen, Maria Elektorowicz, Chunjiang An and Xuelin Tian
{"title":"Seasonal ice encapsulation: the pivotal influence on microplastic transport and fate in cold regions","authors":"Zhikun Chen, Maria Elektorowicz, Chunjiang An and Xuelin Tian","doi":"10.1039/D4EW00339J","DOIUrl":"10.1039/D4EW00339J","url":null,"abstract":"<p >Owing to their small size and stability, MPs have been found to be present in different media all over the world, even in the most remote regions such as the Arctic and Antarctic. The presence of MPs in the waters of the Arctic and Antarctic regions has been widely documented for decades, but the phenomenon of MPs becoming concentrated in sea ice was first reported only ten years ago. The successive reduction in the Arctic sea ice extent during the summer months in recent years could lead to a significant release of MPs that have accumulated over the past decades, potentially yielding unforeseen impacts on the ecosystems of cold regions. However, there has been limited research on the mechanisms and physical processes that govern the incorporation of MPs into the growing ice matrix. The incorporation of MPs during the ice formation process is influenced by polymer properties and prevailing environmental conditions. Therefore, it is becoming increasingly important to investigate the effects of freezing on MP behavior in aquatic environments, especially considering the potential release of accumulated MPs as sea ice continues to diminish.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2267-2272"},"PeriodicalIF":3.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Luo, Tingxi Liu, Weiwei Chen, Caixia Dong and Jianguo Liu
{"title":"Dye wastewater treatment and membrane fouling in a moving bed-UV-photocatalytically modified membrane bioreactor†","authors":"Jing Luo, Tingxi Liu, Weiwei Chen, Caixia Dong and Jianguo Liu","doi":"10.1039/D4EW00474D","DOIUrl":"10.1039/D4EW00474D","url":null,"abstract":"<p >A moving bed-UV-photocatalytically modified membrane bioreactor (MB-UVPMBR) system effectively removed organic matter, and the removal efficiency of Lanasol blue 3R (LB) reached 85.1%, which was significantly greater than that of a moving bed membrane bioreactor (MBMBR) system. The dye removal efficiency of the system was enhanced as a result of the degradation of LB by a polyvinylidene fluoride (PVDF)/TiO<small><sub>2</sub></small>-modified membrane under UV irradiation. An analysis of the membrane resistance distributions of the two systems revealed that the main cause of membrane fouling was the deposition of a cake layer on the membrane surface. Compared with the membrane in the MBMBR system, the membrane in the MB-UVPMBR system exhibited a 67.5% reduction in total filtration resistance, which was attributed to the hydrophilicity and photocatalytic properties of the PVDF/TiO<small><sub>2</sub></small>-modified material. Overall, the removal efficiency of organic pollutants in the MB-UVPMBR system was better than that in the MBMBR system.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2478-2490"},"PeriodicalIF":3.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a fluidized bed reactor for phosphorus recovery from rubber industry wastewater through struvite formation: material selection and prototype†","authors":"Danai Maddewor, Patiya Kemacheevakul, Nipaphan Phungsombun, Pongsavat Savatdipap and Surawut Chuangchote","doi":"10.1039/D4EW00043A","DOIUrl":"10.1039/D4EW00043A","url":null,"abstract":"<p >A fluidized bed reactor for phosphorus (P) recovery from treated rubber industry wastewater through struvite formation was developed. The optimum conditions for struvite recovery and appropriate materials for fabricating the reactor were investigated. The results showed that pH 9 and a magnesium (Mg) : P molar ratio of 1.2 : 1 were the optimum ones. For the material selection part, struvite adhesion was tested on different materials (stainless steel, acrylic, epoxy resin fiberglass, vinyl ester resin fiberglass, aluminum, and galvanized steel). Stainless steel and acrylic had the lowest scale on the materials (0.11 ± 0.01 mg cm<small><sup>−2</sup></small> of the testing area and 0.23 ± 0.01 mg cm<small><sup>−2</sup></small> of the testing area, respectively), while galvanized steel had the highest scale on the material (0.69 ± 0.03 mg cm<small><sup>−2</sup></small> of the testing area). The reason was that different materials have different surface roughness and contact angles. Moreover, Cl<small><sup>−</sup></small> concentration and pH also impacted struvite fouling. Therefore, stainless steel was selected for the fabrication of a struvite reactor. The reactor was operated at a hydraulic retention time (HRT) of 2 h without mixing equipment, which consumed less energy. The P recovery efficiency of the reactor was very high (93%), which was suitable for future applications.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 9","pages":" 2230-2242"},"PeriodicalIF":3.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah Ray, Katerina Papp, Leopold Green, Boo Shan Tseng, Eric Dickenson and Daniel Gerrity
{"title":"DNA origami: thinking ‘outside the fold’ for direct integrity testing of membranes for virus removal in potable reuse applications†","authors":"Hannah Ray, Katerina Papp, Leopold Green, Boo Shan Tseng, Eric Dickenson and Daniel Gerrity","doi":"10.1039/D4EW00285G","DOIUrl":"10.1039/D4EW00285G","url":null,"abstract":"<p >Increasing water scarcity and water quality impairment have led to broader implementation of potable reuse throughout the world. High pressure membranes, including nanofiltration (NF) and reverse osmosis (RO), play a critical role in many potable reuse treatment trains because they are robust barriers against chemical and microbiological constituents. Despite achieving high pathogen log reduction values (LRVs) in practice (<em>e.g.</em>, LRV > 5), high pressure membranes are often credited for only a fraction of observed LRVs (<em>e.g.</em>, LRV < 3), which results in an LRV ‘gap’. This is because commonly used bulk water quality surrogates, namely total organic carbon (TOC) and electrical conductivity (EC), lack the resolution or analytical dynamic range to justify higher credit. The industry is now evaluating alternative surrogates (<em>e.g.</em>, sucralose, sulfate, and strontium) that are both discrete and abundant in wastewater to narrow this regulatory ‘gap’. DNA origami technology can synthesize DNA nanostructures that mimic the size and morphology of viruses, potentially offering another novel surrogate for direct integrity testing. This study simultaneously evaluated pilot-scale NF and RO rejection of spiked MS2 bacteriophage (culture and qPCR), spiked DNA nanostructures (qPCR), and the aforementioned water quality surrogates. RO and NF achieved LRVs of ∼5 for culturable MS2 and censored LRVs of >4 for MS2 RNA. For RO, DNA nanostructure LRVs (up to ∼3) were comparable to the more advanced surrogates (<em>e.g.</em>, sucralose, sulfate, and strontium), while DNA nanostructure LRVs for the NF membranes were generally <1 and consistent with EC and strontium. This study demonstrates that DNA nanostructures may have future value for potable reuse as they can be directly quantified <em>via</em> qPCR (without nucleic extraction) and can provide tailored structures that target various pathogens of interest. However, this study also highlights knowledge gaps that require further study, including the potential adsorption of DNA nanostructures to membrane surfaces and their ability to retain three-dimensional morphology in non-ideal wastewater matrices. Beyond the potential use of DNA origami technology, this study also highlights the value of rapid molecular methods in complementing, or even replacing, traditional culture methods when quantifying targets in membrane challenge tests.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 9","pages":" 2188-2200"},"PeriodicalIF":3.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00285g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitharuch Yuthawong, Chatyapha Thongnueaha and Phanwatt Phungsai
{"title":"Formation of chlorinated disinfection by-products and fate of their precursors in individual processes of a conventional water treatment plant assessed using high-resolution mass spectrometry†","authors":"Vitharuch Yuthawong, Chatyapha Thongnueaha and Phanwatt Phungsai","doi":"10.1039/D4EW00372A","DOIUrl":"10.1039/D4EW00372A","url":null,"abstract":"<p >Dissolved organic matter (DOM) causes operational problems in water treatment plants (WTPs), most notably from precursors of disinfection by-products (DBPs) when reacting with disinfectants. Several WTPs have adopted chlorination not only for disinfection but also for controlling excessive algae in the raw water, which could result in additional DBPs. This study investigated the formation of chlorinated DBPs and their precursors during conventional water treatment processes. Raw water (RW), clarified water (CW), sand filtered water (FW), and finished water were collected from a WTP in Thailand. DOM in the samples was analyzed using Orbitrap mass spectrometry. In parallel, another set of samples (RW, CW, and FW) were chlorinated and subjected to the same analyses. Comparing both sets of samples, the DOM components were assigned to DBPs and precursors. Chlorination of the various samples from the WTP resulted in vastly different DBPs, with only 19 DBPs being common to all samples out of the 740 DBPs observed in this study. Furthermore, 134 of the DBPs could be traced to their precursors that were consistently present throughout the processes and even in the finished water. A clarifying tank was the most effective way to remove the precursors, removing or reducing in intensity 75.0% of the CHO precursors and 78.9% of the CHON precursors. Sand filtration had minimal effects on the precursors. Some DBP precursors remained in the finished water which could potentially cause the formation of DBPs in the water distribution system.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2453-2465"},"PeriodicalIF":3.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}