Paula S. Mateos, Sofía Sampaolesi, María Victoria Toledo and Laura E. Briand
{"title":"Thermochemical and chemo-biological molecular recycling of plastic waste and plastic-biomass waste mixtures: an updated review","authors":"Paula S. Mateos, Sofía Sampaolesi, María Victoria Toledo and Laura E. Briand","doi":"10.1039/D4SU00745J","DOIUrl":"https://doi.org/10.1039/D4SU00745J","url":null,"abstract":"<p >Massive amounts of plastic and biomass waste are mismanaged worldwide, causing detrimental consequences to human health and the environment. In fact, the disposal of residues through landfills without further processing and burning for household heating and cooking are common practices. Thermochemical processing, such as pyrolysis, chemical depolymerization and bioprocessing, has proven feasible for recovering valuable building block molecules from plastic residues. The main goal of pyrolysis is to obtain aliphatic hydrocarbons useful as fuel, while chemical processing generates constitutive molecules of plastic (<em>i.e.</em>, monomers and polyols) that can be repolymerized and reintroduced in the market. Alternatively, the bioprocessing of plastic waste requires prior chemical depolymerization in order to unleash the building blocks. Chemo-enzymatic treatment of waste plastic-biomass mixtures is an open challenge due to the diverse composition of their residues, along with the presence of additives and contaminants. The few reports found in the literature regarding the bioprocessing of plastic residues with lignocellulosic biomass and paper indicate that chemical pretreatment cannot be avoided and that some substances present in the residues can act as fermentation inhibitors that affect waste bioprocessing.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 698-714"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00745j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ankita Sharma, Subrata Panda, Sudesh Kumar and Yogesh Chandra Sharma
{"title":"Repurposed marble dust as a promising adsorbent for modelling the removal of methylene blue from aqueous solutions†","authors":"Ankita Sharma, Subrata Panda, Sudesh Kumar and Yogesh Chandra Sharma","doi":"10.1039/D4SU00594E","DOIUrl":"https://doi.org/10.1039/D4SU00594E","url":null,"abstract":"<p >Marble dust (MD) is a significant landfill waste generated as a byproduct of mining and construction industries. Methylene blue (MB) is a widely used hazardous dye responsible for serious ecological and health risks, and its treatment has become increasingly alarming. This investigation scrutinizes the facile preparation of a non-complex, low-cost, sustainable, and industrially feasible adsorbent along with conducting its mechanistic studies, including XRD, TEM, WD-XRF, FE-SEM, FTIR, BET, TGA, and XPS, followed by its implementation in the removal of MB dye. To examine the relative influence of different variables, namely, time, temperature, pH, activated marble dust (AMD) amount and MB concentration, a central composite design (CCD) model of response surface methodology (RSM) was employed with approved <em>R</em><small><sup>2</sup></small> = 0.9914, supporting the credibility of the model. The additional verification was provided by ANOVA results, including the lack of fit and <em>p</em>-values, endorsing a quadratic model. The 3D response plots clarified the influence of variables on the removal yield; the pH had a dominant influence on the system at its higher value, while at lower pH values, the concentration played a more significant role. The removal process followed a pseudo-second-order kinetics (<em>R</em><small><sup>2</sup></small> = 0.999) and adhered to the Langmuir isotherm model (<em>R</em><small><sup>2</sup></small> = 0.9735), representing monolayer adsorption with <em>q</em><small><sub>max</sub></small> = 1.16 mg g<small><sup>−1</sup></small>. The thermodynamic study of the process fell under Henry's law region and unveiled that the removal of MB is exothermic, spontaneous, and feasible and has appreciable reproducibility up to five cycles. The overall process of adsorption followed physisorption, which was confirmed by the adhesion probability and activation energy calculations. The adsorption process followed pore diffusion and bond formation mechanisms.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 946-962"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00594e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huanhuan Bai, Chengzhi Song, Limei Zheng, Tong Shen, Xu Meng and JinXing Ma
{"title":"Overview of rough surface construction technology for cotton fabrics used in oil/water separation","authors":"Huanhuan Bai, Chengzhi Song, Limei Zheng, Tong Shen, Xu Meng and JinXing Ma","doi":"10.1039/D4SU00674G","DOIUrl":"https://doi.org/10.1039/D4SU00674G","url":null,"abstract":"<p >The discharge of waste organic solvents, various oil/water mixtures and the frequent infiltration of oil into water bodies have created significant threats to the ecological environment. As a result, the separation and recovery of oil/water mixtures have been increasingly investigated by scholars. Many researchers have developed numerous separation materials with excellent separation efficiency and high separation flux, including filter materials, adsorption materials and smart materials with switchable wettability. Among them, natural cotton fabric has been widely studied as a separation material substrate due to its three-dimensional surface structure, porosity, excellent fiber adsorption capacity, recyclability, low cost, and biodegradability. As an oil/water separation material, it is essential for the substrate surface to have a micro–nano structure. Researchers typically use various methods to modify the surface of cotton fabrics with various kinds of micro–nano particles, which create a certain roughness on the fabric surface. These methods include dip-coating, spray-coating, and grafting reactions, followed by further modifications to obtain separation materials for various purposes. In this work, we review the technology of creating rough textures on the surface of cotton fabrics for oil/water separation.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 676-697"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00674g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CO2 conversion to CO by reverse water gas shift and dry reforming using chemical looping†","authors":"Keke Kang, Hiroshi Sampei and Yasushi Sekine","doi":"10.1039/D4SU00395K","DOIUrl":"https://doi.org/10.1039/D4SU00395K","url":null,"abstract":"<p >Chemical looping technology provides an efficient means of sustainable CO<small><sub>2</sub></small> conversion to the important chemical intermediate of CO or syngas by changing conventional co-feeding of reactant into alternating feeding. It presents the important benefits of simplified gas separation, improved selectivity, and more independently adjusted operation conditions compared to those of conventional reactions. Oxygen carriers (OCs) are pivotally important for the performance of chemical looping processes. Herein, recent advances of OCs for two representative chemical looping CO<small><sub>2</sub></small> conversion technologies to CO are reviewed systematically: reverse water gas shift chemical looping (RWGS-CL) and dry reforming of methane by chemical looping (DRM-CL). The influence of composition along with surface and bulk structures of these OCs on conversion, selectivity, and lattice oxygen reactivity, are discussed to obtain better design and optimisation strategies for the tailored OCs. Moreover, modified Ellingham diagrams that exhibit the thermodynamic properties for potential metal oxides for the effective screening of active OCs of DRM-CL and RWGS-CL are proposed, yielding valuable insights not only into RWGS-CL and DRM-CL but also into other distinct chemical looping processes involving into the same reactions. Finally, a summary and prospects are presented for some challenges and future research orientation for CO<small><sub>2</sub></small> conversion to CO <em>via</em> chemical looping.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 4","pages":" 1598-1628"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00395k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZnO/Co3O4 supported on carbon nanotubes as anode materials for high-performance lithium-ion batteries†","authors":"Songli Qiu, Jiafeng Wu, Liyu Chen and Yingwei Li","doi":"10.1039/D4SU00691G","DOIUrl":"https://doi.org/10.1039/D4SU00691G","url":null,"abstract":"<p >Metallic oxides show great potential in achieving high specific capacity as electrodes for lithium-ion batteries (LIBs). However, their inherent poor conductivity and significant volume expansion often result in inferior rate performance and reduced stability in electrochemical cycles. Here, we report a composite of ZnO and Co<small><sub>3</sub></small>O<small><sub>4</sub></small> wrapped in carbon nanotubes (denoted as ZnO/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>@CNTs) with hierarchically porous architecture <em>via</em> pyrolysis–oxidation of a Zn/Co-zeolitic imidazolate framework (ZIF) precursor. The dual-transition metal oxides can undergo abundant redox and alloying reactions with enhanced redox kinetics, while the CNT layers facilitate electron transfer and mitigate volume expansion. As a result, ZnO/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>@CNTs exhibits high electrochemical performance with excellent lithium storage capability and high electronic and ionic diffusion kinetics, making it a promising anode material for LIBs. It achieves a high reversible capacity of 1156 mA h g<small><sup>−1</sup></small> at a current density of 200 mA g<small><sup>−1</sup></small> after 200 cycles, with an extremely low capacity degradation rate of about 0.54‰ per cycle.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 995-1002"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00691g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bordin Weerasuk, Threeraphat Chutimasakul, Nicha Prigyai and Tanagorn Sangtawesin
{"title":"Enhanced dye removal and supercapacitor performance of polyethyleneimine-impregnated activated carbon derived from local eucalyptus biochar","authors":"Bordin Weerasuk, Threeraphat Chutimasakul, Nicha Prigyai and Tanagorn Sangtawesin","doi":"10.1039/D4SU00421C","DOIUrl":"https://doi.org/10.1039/D4SU00421C","url":null,"abstract":"<p >This study evaluated the effectiveness of low-cost eucalyptus biochar (EUBC) as a precursor for activated carbon (EUAC), for methyl orange (MO) removal and supercapacitor applications. The surface charge was made positive by impregnating EUAC with a 10% weight polyethyleneimine (PEI) solution, improving anionic MO adsorption. The impregnation was verified by SEM and XPS, showing a nitrogen content of 9.39%. The adsorption capacity of the 10% wt PEI/EUAC is 142 mg g<small><sup>−1</sup></small>, significantly surpassing previous reports. The adsorption mechanisms were described using the Sips isotherm and Elovich kinetics, indicating heterogeneous adsorption, physisorption and electrostatic interactions. In electrochemical tests, EUAC (263 F g<small><sup>−1</sup></small>) and 10% wt PEI/EUAC (244 F g<small><sup>−1</sup></small>) exhibited similar specific capacitances, six times higher than that of EUBC (40 F g<small><sup>−1</sup></small>) at a current density of 1 A g<small><sup>−1</sup></small>. However, EUBC electrodes exhibited nearly double the internal resistivity of those from EUAC and 10% wt PEI/EUAC, attributed to particle size, pore size, and surface area differences.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 904-913"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00421c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pravalika Butreddy, Sebastian T. Mergelsberg, Jennifer N. Jocz, Dongsheng Li, Venkateshkumar Prabhakaran, Andrew J. Ritchhart, Chinmayee V. Subban, Jon Kellar, Scott R. Beeler, Sarah W. Keenan and Elias Nakouzi
{"title":"Selective dissolution and re-precipitation by pH cycling enables recovery of manganese from surface nodules†","authors":"Pravalika Butreddy, Sebastian T. Mergelsberg, Jennifer N. Jocz, Dongsheng Li, Venkateshkumar Prabhakaran, Andrew J. Ritchhart, Chinmayee V. Subban, Jon Kellar, Scott R. Beeler, Sarah W. Keenan and Elias Nakouzi","doi":"10.1039/D4SU00444B","DOIUrl":"https://doi.org/10.1039/D4SU00444B","url":null,"abstract":"<p >Meeting global sustainable development and climate goals requires a rapid transition to renewable energy technologies. However, these emerging technologies rely on critical elements whose sourcing presents geopolitical and environmental challenges. In this study, we explore ferromanganese nodules from the Oacoma site in South Dakota as a viable feedstock for sourcing manganese, a critical element used in the production of battery cathodes, consumer electronics, and steel. The nodules are readily accessible from the surface site and primarily consist of rhombohedral metal carbonates, including manganese at 3.5–5.4 at% (9.2–14.1 wt%) relative to all the elements present in the nodules. Based on titration experiments and an equilibrium speciation model, we developed a strategy for extracting the manganese by selectively dissolving carbonate phases in acidic conditions, followed by selectively re-precipitating manganese oxide in alkaline conditions. Specifically, exposing the samples to pH 1.5–2 dissolved almost all the calcium and manganese ions, while retaining a significant portion of the iron and magnesium in the residual nodule powders. Subsequently, increasing the pH of the leachate to 5.7 resulted in the selective re-precipitation of predominantly iron hydroxide. Further increasing the pH of the leachate solution to 10.9 finally produced a relatively pure manganese oxide product. Our pH cycling approach recovered 65.7–74.2% of the manganese in the nodules at 70.3–85.4 at% (81.5–91.0 wt%) purity relative to the other metals, without the need for specialty chemicals, membranes, ligands, or resins, and without generating highly acidic wastes. We further performed a preliminary assessment of the scalability and industrial relevance of this process to explore these nodules as a feedstock for sustainable sourcing of manganese.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 983-994"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00444b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristina Pozo-Gonzalo, Bethan L. Charles, Xiaolei Wang and Erlantz Lizundia
{"title":"Energy materials redesign, reuse and repurpose","authors":"Cristina Pozo-Gonzalo, Bethan L. Charles, Xiaolei Wang and Erlantz Lizundia","doi":"10.1039/D4SU90068E","DOIUrl":"https://doi.org/10.1039/D4SU90068E","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 1","pages":" 19-20"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su90068e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RM. Muhammad Nur Fauzan, Kotchaporn Thangunpai, Akiko Nakagawa-Izumi, Mikio Kajiyama and Toshiharu Enomae
{"title":"Preparation of marine-sourced alginate fibres to produce composite paper from both green and blue carbons","authors":"RM. Muhammad Nur Fauzan, Kotchaporn Thangunpai, Akiko Nakagawa-Izumi, Mikio Kajiyama and Toshiharu Enomae","doi":"10.1039/D4SU00073K","DOIUrl":"https://doi.org/10.1039/D4SU00073K","url":null,"abstract":"<p >Recent trends in papermaking have led to an increase in the use of alternative resources. Alginate fibres, derived from marine sourced brown seaweed (blue carbon), offer a potential alternative to wood pulp in paper production. The process of obtaining alginate involves pre-treatment, alkaline extraction, precipitation, and purification. Through successful extraction, alginates were obtained from <em>Laminaria japonica</em> (<em>L. japonica</em>) and <em>Sargassum polycystum</em> (<em>S. polycystum</em>) with yields ranging from 17.4% to 28.9% and 14.7% to 26.8%, respectively. The molecular mass of the alginates ranged from 0.68 × 10<small><sup>5</sup></small> to 2.74 × 10<small><sup>5</sup></small> g mol<small><sup>−1</sup></small> for <em>L. japonica</em> and from 0.39 × 10<small><sup>5</sup></small> to 0.994 × 10<small><sup>5</sup></small> g mol<small><sup>−1</sup></small> for <em>S. polycystum</em>. Calcium alginate fibres and wood pulp fibres were combined to create composites. The results from this study suggest that the composites achieved an optimum tensile index when the samples contained 50% calcium alginate fibres. Although the results were promising, the tensile index of the paper made exclusively from pulp fibres remained superior. Furthermore, thermal degradation tests demonstrated improved thermal stability for the composite papers compared to hardwood bleached kraft pulp (HBKP) sheets. In conclusion, a composite prepared from a mixture of calcium alginate and wood pulp fibres was successfully produced and overall 50% inclusion of calcium alginate fibres provided an optimum composite.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 1","pages":" 599-610"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00073k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photocatalytic abatement of ambient NOx by TiO2 coated solar panels†","authors":"Jesse Molar, Pierre Herckes and Matthew P. Fraser","doi":"10.1039/D4SU00516C","DOIUrl":"https://doi.org/10.1039/D4SU00516C","url":null,"abstract":"<p >Nitric oxide and nitrogen dioxide (combined, known as NO<small><sub><em>x</em></sub></small>) and their contribution to ozone and photochemical smog generation are persistent issues in urban environments. Many technologies have been developed to alleviate this issue, including photochemical transformation. While previous experiments have focused on incorporating photocatalysts into paving and building materials, we report coating glass substrates for the eventual application to solar panels that are inherently positioned to optimize the amount of solar exposure they receive, creating a surface compatible with photocatalytic coatings. As most photocatalyst materials absorb the ultraviolet spectrum outside the light range used for energy production, this approach could enable dual-functionalized solar panels for energy generation and air remediation. Proof of concept testing was conducted to determine the effectiveness of TiO<small><sub>2</sub></small>-based photocatalytic products to oxidize NO<small><sub><em>x</em></sub></small> to NO<small><sub>3</sub></small><small><sup>−</sup></small>/HNO<small><sub>3</sub></small>. It was found that the tested TiO<small><sub>2</sub></small>-based photocatalytic products can successfully reduce NO<small><sub><em>x</em></sub></small> concentrations by up to 36%. With the success of laboratory proof of concept experiments, field testing was conducted to determine if glass panels coated with TiO<small><sub>2</sub></small> products can reduce NO<small><sub><em>x</em></sub></small> concentrations in environmental conditions. Deionized water washes of the coated glass panels were analyzed through ion chromatography to determine the concentration of NO<small><sub>3</sub></small><small><sup>−</sup></small> formed on the surface of the coated glass panels. Field testing resulted in flux values up to 33 mg of NO<small><sub>3</sub></small><small><sup>−</sup></small> per m<small><sup>2</sup></small> per day and an average flux up to 8.8 mg of NO<small><sub>3</sub></small><small><sup>−</sup></small> per m<small><sup>2</sup></small> per day, representing an order of magnitude value to evaluate possible large-scale implementation. Utilizing field testing results, scale-up estimations suggest widespread application would have a limited impact on total NO<small><sub><em>x</em></sub></small> concentrations. Still, at the local scale, deployment at sites with elevated NO<small><sub><em>x</em></sub></small> concentrations could meaningfully improve local air quality.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 963-972"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00516c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}