Spaced functionalization of poly(ionic liquid)s for boosting the catalytic conversion of CO2 into cyclic carbonates†

Qianmeng Zhao, Shaifei Liu, Wen Liu, Mengqian Fu, Zhenyang Xu, Qian Su and Weiguo Cheng
{"title":"Spaced functionalization of poly(ionic liquid)s for boosting the catalytic conversion of CO2 into cyclic carbonates†","authors":"Qianmeng Zhao, Shaifei Liu, Wen Liu, Mengqian Fu, Zhenyang Xu, Qian Su and Weiguo Cheng","doi":"10.1039/D4SU00661E","DOIUrl":null,"url":null,"abstract":"<p >Preparation of cyclic carbonates from CO<small><sub>2</sub></small> and epoxides <em>via</em> cycloaddition is a well-established synthetic route, which is not only economical but also in line with the atomic economy. To overcome the problem of the cluster formation of hydrogen-bond donors in functionalized poly(ionic liquid)s, which reduces their catalytic activity, a series of spacer-functionalized poly(ionic liquid) catalysts were developed. In poly(ionic) liquids, the hydrogen-donating effect enhances the intrinsic catalytic performance of the active sites and the long-chain alkyl groups prevent interactions between hydrogen-bond-donor groups, thus increasing the utilization of the active sites. Among the developed poly(ionic liquid) catalysts, the poly(ionic liquid) P[AC<small><sub>12</sub></small>VIM][Br] containing amino groups demonstrated the highest catalytic activity (propylene oxide conversion up to 99%), which was comparable with that of bulky ILs. The best catalytic performance of P[AC<small><sub>12</sub></small>VIM][Br] was attributed owing to its multiple functions in not only activating CO<small><sub>2</sub></small> and epoxides but also stabilizing Br<small><sup>−</sup></small>. Furthermore, the amphiphilicity of amino-functionalized poly(ionic liquid)s boosted their catalytic suitability for epoxide substrates with lipophilic edge groups, which was better than that of conventional poly(ionic liquid)s. Through XPS and NMR analyses, a mechanism of operation is proposed in which imidazole and hydrogen donor groups act co-operatively in epoxy during the reaction to assist in ring-opening. Thus, this study provides a new approach for improving the catalytic performance of poly(ionic liquid) catalysts from the viewpoint of an intrinsic reaction and utilization of the active sites.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1404-1414"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00661e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00661e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Preparation of cyclic carbonates from CO2 and epoxides via cycloaddition is a well-established synthetic route, which is not only economical but also in line with the atomic economy. To overcome the problem of the cluster formation of hydrogen-bond donors in functionalized poly(ionic liquid)s, which reduces their catalytic activity, a series of spacer-functionalized poly(ionic liquid) catalysts were developed. In poly(ionic) liquids, the hydrogen-donating effect enhances the intrinsic catalytic performance of the active sites and the long-chain alkyl groups prevent interactions between hydrogen-bond-donor groups, thus increasing the utilization of the active sites. Among the developed poly(ionic liquid) catalysts, the poly(ionic liquid) P[AC12VIM][Br] containing amino groups demonstrated the highest catalytic activity (propylene oxide conversion up to 99%), which was comparable with that of bulky ILs. The best catalytic performance of P[AC12VIM][Br] was attributed owing to its multiple functions in not only activating CO2 and epoxides but also stabilizing Br. Furthermore, the amphiphilicity of amino-functionalized poly(ionic liquid)s boosted their catalytic suitability for epoxide substrates with lipophilic edge groups, which was better than that of conventional poly(ionic liquid)s. Through XPS and NMR analyses, a mechanism of operation is proposed in which imidazole and hydrogen donor groups act co-operatively in epoxy during the reaction to assist in ring-opening. Thus, this study provides a new approach for improving the catalytic performance of poly(ionic liquid) catalysts from the viewpoint of an intrinsic reaction and utilization of the active sites.

Abstract Image

聚离子液体的空间功能化促进CO2催化转化为环状碳酸盐†
以二氧化碳和环氧化物为原料,采用环加成法制备环状碳酸盐是一条既经济又符合原子经济性的成熟合成路线。为克服功能化聚离子液体中氢键给体团簇形成而降低其催化活性的问题,研制了一系列间隔功能化聚离子液体催化剂。在多离子液体中,给氢效应增强了活性位点的本征催化性能,长链烷基阻止了给氢键基团之间的相互作用,从而提高了活性位点的利用率。在已开发的聚离子液体催化剂中,含氨基的聚离子液体P[AC12VIM][Br]的催化活性最高(环氧丙烷转化率达99%),与体积较大的il相当。P[AC12VIM][Br]的催化性能最好,因为它不仅具有活化CO2和环氧化物的功能,而且具有稳定Br−的功能。此外,氨基功能化聚离子液体的两亲性提高了其对具有亲脂性边基的环氧化合物底物的催化适应性,优于传统的聚离子液体。通过XPS和NMR分析,提出了咪唑和氢给基在环氧树脂中协同作用,辅助开环的作用机理。因此,本研究从本征反应和活性位点利用的角度为提高聚离子液体催化剂的催化性能提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信