RSC sustainability最新文献

筛选
英文 中文
Afterglow quenching in plasma-based dry reforming of methane: a detailed analysis of the post-plasma chemistry via kinetic modelling.
RSC sustainability Pub Date : 2025-01-28 DOI: 10.1039/d4su00676c
Joachim Slaets, Eduardo Morais, Annemie Bogaerts
{"title":"Afterglow quenching in plasma-based dry reforming of methane: a detailed analysis of the post-plasma chemistry <i>via</i> kinetic modelling.","authors":"Joachim Slaets, Eduardo Morais, Annemie Bogaerts","doi":"10.1039/d4su00676c","DOIUrl":"10.1039/d4su00676c","url":null,"abstract":"<p><p>We have developed a kinetic model to investigate the post-plasma (afterglow) chemistry of dry reforming of methane (DRM) in warm plasmas with varying CO<sub>2</sub>/CH<sub>4</sub> ratios. We used two methods to study the effects of plasma temperature and afterglow quenching on the CO<sub>2</sub> and CH<sub>4</sub> conversion and product selectivity. First, quenching <i>via</i> conductive cooling is shown to be unimportant for mixtures with 30/70 and 50/50 CO<sub>2</sub>/CH<sub>4</sub> ratios, while it affects mixtures containing excess CO<sub>2</sub> (70/30) by influencing radical recombination towards CO<sub>2</sub>, H<sub>2</sub> and H<sub>2</sub>O, as well as the water gas shift reaction, decreasing the CO<sub>2</sub> conversion throughout the afterglow. This is accompanied by shifts in product distribution, from CO and H<sub>2</sub>O to CO<sub>2</sub> and H<sub>2</sub>, and the magnitude of this effect depends on a combination of plasma temperature and quenching rate. Second and more importantly, quenching <i>via</i> post-plasma mixing of the hot plasma effluent with fresh cold gas yields a significant improvement in conversion according to our model, with 258% and 301% extra conversion for CO<sub>2</sub> and CH<sub>4</sub>, respectively. This is accompanied by small changes in product selectivity, which are the result of interrupted reaction pathways at lower gas temperatures in the afterglow. Effectively, the post-plasma mixing can function as a heat recovery system, significantly lowering the energy cost through the additional conversion ensued. With this approach, our model predicts that energy consumption can be lowered by nearly 80% in comparison to DRM under the same plasma conditions without mixing.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Showcasing the technological advancements of carbon dioxide conversion: a pathway to a sustainable future
RSC sustainability Pub Date : 2025-01-23 DOI: 10.1039/D5SU90006A
Xiao Jiang
{"title":"Showcasing the technological advancements of carbon dioxide conversion: a pathway to a sustainable future","authors":"Xiao Jiang","doi":"10.1039/D5SU90006A","DOIUrl":"https://doi.org/10.1039/D5SU90006A","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 626-628"},"PeriodicalIF":0.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su90006a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From lead–acid batteries to perovskite solar cells – efficient recycling of Pb-containing materials†
RSC sustainability Pub Date : 2025-01-16 DOI: 10.1039/D4SU00470A
Jiajia Suo, Bowen Yang, Sonja Prideaux, Henrik Pettersson and Lars Kloo
{"title":"From lead–acid batteries to perovskite solar cells – efficient recycling of Pb-containing materials†","authors":"Jiajia Suo, Bowen Yang, Sonja Prideaux, Henrik Pettersson and Lars Kloo","doi":"10.1039/D4SU00470A","DOIUrl":"https://doi.org/10.1039/D4SU00470A","url":null,"abstract":"<p >The most efficient and stable perovskite solar cells typically contain lead compounds as a key component in the light-absorbing layer. To advance the commercialization of perovskite photovoltaics, it is crucial to address sustainability concerns regarding the use of toxic lead. In this work, we have developed a straightforward lead recycling pathway that converts lead compounds from lead–acid batteries into lead iodide. Purity analyses of the resulting lead iodide and the direct fabrication of perovskite solar cells demonstrate that the recycled lead iodide matches the quality of commercially available products. Most importantly, establishing this efficient lead recycling process not only supports sustainable recycling and resource utilization in a circular materials flow but also promotes the future development of perovskite photovoltaics.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 1003-1008"},"PeriodicalIF":0.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00470a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold plasma activated CO2 desorption from calcium carbonate for carbon capture†
RSC sustainability Pub Date : 2025-01-15 DOI: 10.1039/D4SU00491D
Hongtao Zhong, Daniel Piriaei, Gennaro Liccardo, Jieun Kang, Benjamin Wang, Matteo Cargnello and Mark A. Cappelli
{"title":"Cold plasma activated CO2 desorption from calcium carbonate for carbon capture†","authors":"Hongtao Zhong, Daniel Piriaei, Gennaro Liccardo, Jieun Kang, Benjamin Wang, Matteo Cargnello and Mark A. Cappelli","doi":"10.1039/D4SU00491D","DOIUrl":"https://doi.org/10.1039/D4SU00491D","url":null,"abstract":"<p >This work investigates the non-equilibrium regeneration of one scalable sorbent material for carbon capture, calcium oxide, in a customized flow reactor coupled to a low-temperature atmospheric-pressure plasma source. The results show that such a plasma is capable of desorbing CO<small><sub>2</sub></small> from CaCO<small><sub>3</sub></small>, with an operating temperature far below the thermal decomposition temperature of carbonate. The desorbed CO<small><sub>2</sub></small> is further converted to CO <em>in situ</em>. The energy cost is 1.90 × 10<small><sup>3</sup></small> kWh per tCO<small><sub>2</sub></small>, as the same order of magnitude as the state-of-the-art high temperature regeneration technology. A non-equilibrium kinetic mechanism is proposed in which CO<small><sub>2</sub></small> desorption is coupled into air plasma chemistry. Electron-impact reactions in air lead to the generation of vibrationally excited nitrogen and ozone. Subsequent quenching of atomic oxygen on the carbonate surface can regenerate CaO, while NO<small><sub><em>x</em></sub></small> will pollute the surface. Compared with the previous methods used in sorbent regeneration, plasma-based technologies offer an electrified, sustainable, and low-temperature solution based on the non-equilibrium plasma chemistry. Possible scaling strategies include fluidization, flow pulsation, and plasma catalysis. This work demonstrates the feasibility of non-equilibrium plasma processing of the sorbent material for cyclic capture and regeneration in atmospheric air using thermally low-intensity processes.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 973-982"},"PeriodicalIF":0.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00491d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyanobacterial green chemistry: a blue-green approach for a sustainable environment, energy, and chemical production 蓝藻绿色化学:实现可持续环境、能源和化学品生产的蓝绿方法
RSC sustainability Pub Date : 2025-01-14 DOI: 10.1039/D4SU00448E
Priyul Pandey, Deepa Pandey, Anjali Gupta, Rinkesh Gupta, Sapna Tiwari and Shailendra Pratap Singh
{"title":"Cyanobacterial green chemistry: a blue-green approach for a sustainable environment, energy, and chemical production","authors":"Priyul Pandey, Deepa Pandey, Anjali Gupta, Rinkesh Gupta, Sapna Tiwari and Shailendra Pratap Singh","doi":"10.1039/D4SU00448E","DOIUrl":"https://doi.org/10.1039/D4SU00448E","url":null,"abstract":"<p >Increased human activity due to the ever-increasing global population has necessitated the urgent need for a sustainable environment, food, and energy. Cyanobacteria, classically known as blue-green algae, are oxygen-producing photosynthetic organisms that are emerging as an option to achieve sustainable development goals. These Gram-negative prokaryotes can efficiently sequester atmospheric CO<small><sub>2</sub></small> due to an efficient carbon concentrating mechanism and divert it to the production of energy-rich compounds, <em>i.e.</em>, biofuel, and other valuable chemicals, using their flexible metabolic chassis. Additionally, cyanobacteria also minimize the emission of methane, which is another greenhouse gas, by providing oxygen to methane-oxidizing bacteria. In recent years, several genetically engineered strains of cyanobacteria have been developed that can produce biofuels and several other valuable chemicals. Strains have also been engineered for bioplastic production and bioremediation purposes. These organisms have gained attention as biofertilizers and can increase the quality and fertility of soil. Thus, cyanobacteria are promising CO<small><sub>2</sub></small> sinks that can contribute to global efforts in carbon capture and storage initiatives while producing bioenergy, cosmetics, pharmaceuticals, and several other valuable chemicals. Therefore, these blue-green cells can be used for green chemistry while minimizing the atmospheric CO<small><sub>2</sub></small> concentration. In this review, we present various applications of cyanobacterial biomass to achieve sustainable development goals. We also discuss challenges associated with the wide application of cyanobacteria and the future direction to make full use of these robust organisms to fulfill our future demands in an environment-friendly manner.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 661-675"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00448e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inventing a secure future: material stewardship as chemistry's mission for sustainability 创造安全的未来:材料监管是化学的可持续发展使命
RSC sustainability Pub Date : 2025-01-14 DOI: 10.1039/D4SU00576G
Stephen A. Matlin, Sarah E. Cornell, Klaus Kümmerer, Peter G. Mahaffy and Goverdhan Mehta
{"title":"Inventing a secure future: material stewardship as chemistry's mission for sustainability","authors":"Stephen A. Matlin, Sarah E. Cornell, Klaus Kümmerer, Peter G. Mahaffy and Goverdhan Mehta","doi":"10.1039/D4SU00576G","DOIUrl":"https://doi.org/10.1039/D4SU00576G","url":null,"abstract":"<p >As the science of transformation of matter, chemistry provides knowledge, innovation and practice that are fundamental to the current efforts to achieve sustainability in the face of challenges that include multiple environmental crises (including pollution, climate change and biodiversity loss) and looming shortages of ‘critical’ materials. This article presents the case for chemistry and the chemical sciences adopting material stewardship as a central mission, whose aim is to transform and use the Earth's available stock of material resources in ways consistent with ensuring sustainability for people and for the physical and biological systems of the planet on which all life depends. The implications of this mission are examined, including for chemistry's contributions to extending knowledge, processes and products required for stewarding the Earth's physical and biological materials and systems. The mission includes supporting energy transitions necessary to stabilise Earth systems that are increasingly perturbed by anthropogenic effects. An overview is presented of how chemistry's mission of material stewardship interconnects with sustainability frameworks providing broad principles and goals, including the UN's Sustainable Development Goals and the Planetary Boundaries and Human Security frameworks, as well as with specific chemistry movements and orientations (including green, sustainable, circular and one-world chemistry) and enabling tools (<em>e.g.</em> systems thinking, material circularity and life cycle assessment) that provide guiding concepts, pathways and capacities for chemistry's contributions towards sustainability. The utility of the material stewardship mission is exemplified through three case studies, related to a product type, a sustainability tool, and a sustainability movement. The need is emphasised for the chemistry profession to work across disciplines to help shape policy and practice towards a sustainable future. This includes engaging with others in the processes of negotiation that shape global agreements on goals, policies and programmes that impact on sustainability. Critical ones currently in progress include the efforts to find mechanisms to reduce greenhouse gas emissions to limit global warming to the UN's target of not more than 1.5 °C above pre-industrial levels by 2050, and to establish a UN Science-Policy Panel on chemicals.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 804-821"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00576g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible fire-safe hybrid organic–inorganic cellulose aerogels from sol–gel casting†
RSC sustainability Pub Date : 2025-01-10 DOI: 10.1039/D4SU00568F
Björn K. Birdsong, Antonio J. Capezza, Rhoda Afriyie Mensah, Patric Elf, Mikael S. Hedenqvist, Fritjof Nilsson and Richard T. Olsson
{"title":"Flexible fire-safe hybrid organic–inorganic cellulose aerogels from sol–gel casting†","authors":"Björn K. Birdsong, Antonio J. Capezza, Rhoda Afriyie Mensah, Patric Elf, Mikael S. Hedenqvist, Fritjof Nilsson and Richard T. Olsson","doi":"10.1039/D4SU00568F","DOIUrl":"https://doi.org/10.1039/D4SU00568F","url":null,"abstract":"<p >The flexibility of hybrid silicon-oxide cellulose aerogels was achieved through the formation of thin, uniform silica coatings on cellulose fibres, or local regions of a classical spherical aerogel (Kistler aerogel) combined with areas of less coated cellulose fibres, making use of the flexible properties of the cellulose nanofibres. Furthermore, the inclusion of cellulose during the sol–gel formation allowed the use of traditional freeze-drying instead of CO<small><sub>2</sub></small> critical point drying as a method for the removal of the liquid phase. The silicon oxide morphologies revealed the possibility of fine-tuning the coating's structure by the choice of the silicon-oxide precursors. Using methyltrimethoxysilane (MTMS) resulted in the formation of classical aerogel or spherical particles, while the use of tetraethyl orthosilicate (TEOS) yielded “pearl-necklace” fibres, and the mix of (3-aminopropyl)triethoxysilane (APTES) with MTMS yielded smooth uniform coatings. The prepared coating morphologies markedly influenced the aerogel's properties (mechanical stiffness/flexibility, flame resistance and hydrophilicity). The silica coatings endured high-temperature exposure and the thermal removal of the cellulose template without substantial morphological changes was confirmed, showing the possibility to use cellulose as an effective template for the synthesis of silicon-oxide nanofibres. The possibility to selectively control aerogel properties already at the synthesis stage, using abundant and renewable materials together with the possibility of using more energy-conservative freeze-drying (rather than critical point drying), is a promising method for more sustainable aerogel preparation towards high-end commercial applications such as electrical fuel cell insulation.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 1009-1018"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00568f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrification of fertilizer production via plasma-based nitrogen fixation: a tutorial on fundamentals
RSC sustainability Pub Date : 2025-01-09 DOI: 10.1039/D4SU00726C
Mikhail Gromov, Yury Gorbanev, Elise Vervloessem, Rino Morent, Rony Snyders, Nathalie De Geyter, Annemie Bogaerts and Anton Nikiforov
{"title":"Electrification of fertilizer production via plasma-based nitrogen fixation: a tutorial on fundamentals","authors":"Mikhail Gromov, Yury Gorbanev, Elise Vervloessem, Rino Morent, Rony Snyders, Nathalie De Geyter, Annemie Bogaerts and Anton Nikiforov","doi":"10.1039/D4SU00726C","DOIUrl":"https://doi.org/10.1039/D4SU00726C","url":null,"abstract":"<p >Nitrogen-containing fertilizers are key chemicals for our population, ensuring the constantly growing demands in food production. Fertilizers promote vegetative growth, specifically through the formation of amino acids, the building blocks of proteins. However, the current synthesis method relies on the Haber–Bosch process for ammonia synthesis, one of the largest-volume chemicals made globally, having a significant environmental impact. The need for a sustainable and green industry with low CO<small><sub>2</sub></small> emission triggers the demand to reconsider the current fertilizer production approach. In this context, electrified, local, small-scale production emerges as a promising option to address current environmental and economic challenges. This approach allows production to be consumer-oriented while adhering to environmental regulations. In light of this, non-equilibrium plasma technology has gained a wave of attention. Plasma-based nitrogen fixation has a long history, starting more than a century ago. It was one of the first nitrogen fixation methods invented and later replaced by more energy-efficient technologies. In the current paradigm, this approach can fulfill all industrial and social demands: it perfectly aligns with non-stable renewable energy, is carbon-neutral, relatively simple to maintain, and can provide a valuable source of fixed nitrogen on a small-scale, on-farm production with complete control over land processing. The plethora of existing publications on plasma-based nitrogen fixation addresses the concept of synthesizing nitrogen-containing fertilizers. However, despite significant advancements in the field and the availability of numerous reviews, they tend to focus on specific aspects, such as plasma physics (<em>e.g.</em>, the role of vibration excitation), plasma-initiated chemistry (<em>e.g.</em>, nitrogen oxidation or reduction), or reactor design. This tutorial review aims to bridge these gaps by presenting an integrated and accessible explanation of the interconnections between different aspects affecting plasma-based nitrogen fixation. It is designed both for newcomers to the field and those who want to broaden their knowledge, highlighting the current state-of-the-art and offering insights into future research directions and implementations.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 757-780"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00726c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermochemical and chemo-biological molecular recycling of plastic waste and plastic-biomass waste mixtures: an updated review
RSC sustainability Pub Date : 2025-01-08 DOI: 10.1039/D4SU00745J
Paula S. Mateos, Sofía Sampaolesi, María Victoria Toledo and Laura E. Briand
{"title":"Thermochemical and chemo-biological molecular recycling of plastic waste and plastic-biomass waste mixtures: an updated review","authors":"Paula S. Mateos, Sofía Sampaolesi, María Victoria Toledo and Laura E. Briand","doi":"10.1039/D4SU00745J","DOIUrl":"https://doi.org/10.1039/D4SU00745J","url":null,"abstract":"<p >Massive amounts of plastic and biomass waste are mismanaged worldwide, causing detrimental consequences to human health and the environment. In fact, the disposal of residues through landfills without further processing and burning for household heating and cooking are common practices. Thermochemical processing, such as pyrolysis, chemical depolymerization and bioprocessing, has proven feasible for recovering valuable building block molecules from plastic residues. The main goal of pyrolysis is to obtain aliphatic hydrocarbons useful as fuel, while chemical processing generates constitutive molecules of plastic (<em>i.e.</em>, monomers and polyols) that can be repolymerized and reintroduced in the market. Alternatively, the bioprocessing of plastic waste requires prior chemical depolymerization in order to unleash the building blocks. Chemo-enzymatic treatment of waste plastic-biomass mixtures is an open challenge due to the diverse composition of their residues, along with the presence of additives and contaminants. The few reports found in the literature regarding the bioprocessing of plastic residues with lignocellulosic biomass and paper indicate that chemical pretreatment cannot be avoided and that some substances present in the residues can act as fermentation inhibitors that affect waste bioprocessing.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 698-714"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00745j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposed marble dust as a promising adsorbent for modelling the removal of methylene blue from aqueous solutions†
RSC sustainability Pub Date : 2025-01-08 DOI: 10.1039/D4SU00594E
Ankita Sharma, Subrata Panda, Sudesh Kumar and Yogesh Chandra Sharma
{"title":"Repurposed marble dust as a promising adsorbent for modelling the removal of methylene blue from aqueous solutions†","authors":"Ankita Sharma, Subrata Panda, Sudesh Kumar and Yogesh Chandra Sharma","doi":"10.1039/D4SU00594E","DOIUrl":"https://doi.org/10.1039/D4SU00594E","url":null,"abstract":"<p >Marble dust (MD) is a significant landfill waste generated as a byproduct of mining and construction industries. Methylene blue (MB) is a widely used hazardous dye responsible for serious ecological and health risks, and its treatment has become increasingly alarming. This investigation scrutinizes the facile preparation of a non-complex, low-cost, sustainable, and industrially feasible adsorbent along with conducting its mechanistic studies, including XRD, TEM, WD-XRF, FE-SEM, FTIR, BET, TGA, and XPS, followed by its implementation in the removal of MB dye. To examine the relative influence of different variables, namely, time, temperature, pH, activated marble dust (AMD) amount and MB concentration, a central composite design (CCD) model of response surface methodology (RSM) was employed with approved <em>R</em><small><sup>2</sup></small> = 0.9914, supporting the credibility of the model. The additional verification was provided by ANOVA results, including the lack of fit and <em>p</em>-values, endorsing a quadratic model. The 3D response plots clarified the influence of variables on the removal yield; the pH had a dominant influence on the system at its higher value, while at lower pH values, the concentration played a more significant role. The removal process followed a pseudo-second-order kinetics (<em>R</em><small><sup>2</sup></small> = 0.999) and adhered to the Langmuir isotherm model (<em>R</em><small><sup>2</sup></small> = 0.9735), representing monolayer adsorption with <em>q</em><small><sub>max</sub></small> = 1.16 mg g<small><sup>−1</sup></small>. The thermodynamic study of the process fell under Henry's law region and unveiled that the removal of MB is exothermic, spontaneous, and feasible and has appreciable reproducibility up to five cycles. The overall process of adsorption followed physisorption, which was confirmed by the adhesion probability and activation energy calculations. The adsorption process followed pore diffusion and bond formation mechanisms.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 946-962"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00594e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信