Mynta Norberg, Selda Bekirovska, Jana Klein, Finn Moeller, Karl P. J. Gustafson, Margareta Sandahl, Christian P. Hulteberg, Charlotta Turner, Omar Y. Abdelaziz, Siegfried R. Waldvogel, Peter Spégel and Oskar Bengtsson
{"title":"Oxidative depolymerization of lignosulfonates to low-molecular weight aromatics: an interlaboratory study","authors":"Mynta Norberg, Selda Bekirovska, Jana Klein, Finn Moeller, Karl P. J. Gustafson, Margareta Sandahl, Christian P. Hulteberg, Charlotta Turner, Omar Y. Abdelaziz, Siegfried R. Waldvogel, Peter Spégel and Oskar Bengtsson","doi":"10.1039/D5SU00698H","DOIUrl":null,"url":null,"abstract":"<p >In the pursuit of sustainable chemical production, feedstock diversification is essential. Lignosulfonates, a water-soluble aromatic byproduct of the sulfite pulping process, offer a green alternative for producing value-added compounds such as vanillin <em>via</em> oxidative depolymerization. However, current depolymerization processes are not comparable due to inconsistencies in feedstocks and a lack of validated analytical methods. In the present study, we developed and validated a novel sample preparation and GC/FID method for quantifying vanillin, vanillic acid, and acetovanillone. Three oxidation processes—continuous alkaline (CA), heterogeneous metal-catalysed (HMC), and electrochemical nickel anode (ENA)—were optimized and compared using the same feedstock. A round-robin test ensured analytical comparability across different labs. The analytical method demonstrated high precision (<5% intra-lab, <10% inter-day, and <25% inter-lab RSD) for all compounds. The HMC oxidation process yielded the highest total monomer concentration (4.3 g L<small><sup>−1</sup></small>) and monomer yield (8.7 wt%), while CA oxidation achieved the highest volumetric productivity (up to 840 g (L × h)<small><sup>−1</sup></small>). Future work should explore hybrid approaches leveraging the strengths of these oxidative lignin depolymerisation processes.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 4818-4824"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00698h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00698h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the pursuit of sustainable chemical production, feedstock diversification is essential. Lignosulfonates, a water-soluble aromatic byproduct of the sulfite pulping process, offer a green alternative for producing value-added compounds such as vanillin via oxidative depolymerization. However, current depolymerization processes are not comparable due to inconsistencies in feedstocks and a lack of validated analytical methods. In the present study, we developed and validated a novel sample preparation and GC/FID method for quantifying vanillin, vanillic acid, and acetovanillone. Three oxidation processes—continuous alkaline (CA), heterogeneous metal-catalysed (HMC), and electrochemical nickel anode (ENA)—were optimized and compared using the same feedstock. A round-robin test ensured analytical comparability across different labs. The analytical method demonstrated high precision (<5% intra-lab, <10% inter-day, and <25% inter-lab RSD) for all compounds. The HMC oxidation process yielded the highest total monomer concentration (4.3 g L−1) and monomer yield (8.7 wt%), while CA oxidation achieved the highest volumetric productivity (up to 840 g (L × h)−1). Future work should explore hybrid approaches leveraging the strengths of these oxidative lignin depolymerisation processes.
为了追求可持续的化工生产,原料多样化是必不可少的。木质素磺酸盐是亚硫酸盐制浆过程的一种水溶性芳香副产物,通过氧化解聚为生产香草醛等增值化合物提供了一种绿色替代品。然而,由于原料的不一致和缺乏有效的分析方法,目前的解聚过程是不可比较的。在本研究中,我们开发并验证了一种新的样品制备和GC/FID方法,用于定量香兰素、香兰酸和乙酰香兰酮。在相同的原料条件下,对连续碱性(CA)、非均相金属催化(HMC)和电化学镍阳极(ENA)三种氧化工艺进行了优化和比较。循环测试确保了不同实验室之间的分析可比性。该分析方法对所有化合物均具有较高的精密度(实验室内RSD为5%,日间RSD为10%,实验室间RSD为25%)。HMC氧化过程产生了最高的单体总浓度(4.3 g L - 1)和单体产率(8.7 wt%),而CA氧化获得了最高的体积生产率(高达840 g (L × h) - 1)。未来的工作应该探索利用这些氧化木质素解聚过程的优势的混合方法。