Omar anor, Sofia Kerouad, Issam Forsal, Wissal Kotmani, Mustapha Bouzaid and Latifa Bouissane
{"title":"Development of a bio-synthesized zinc oxide nanoparticle sensor for the quantification of totarolone in Tetraclinis articulata","authors":"Omar anor, Sofia Kerouad, Issam Forsal, Wissal Kotmani, Mustapha Bouzaid and Latifa Bouissane","doi":"10.1039/D5SU00477B","DOIUrl":null,"url":null,"abstract":"<p >Diterpenoids such as totarolone exhibit significant bioactivity, making their accurate quantification in plant extracts essential for pharmacological studies and quality control. Conventional analytical methods are often time-consuming, costly, or environmentally demanding, highlighting the need for rapid, sensitive, and eco-friendly alternatives. In this work, we report the electrochemical quantification of totarolone, a bioactive diterpenoid, in <em>Tetraclinis articulata</em> extract using a carbon paste electrode modified with green-synthesized zinc oxide (bio-ZnO) nanoparticles. Bio-ZnO was prepared <em>via</em> a plant-mediated route using <em>Calamintha nepeta</em> extract, providing a sustainable and eco-friendly alternative to conventional chemical synthesis. XRD analysis revealed that the bio-ZnO nanoparticles possess a hexagonal wurtzite structure with an average crystallite size of ∼10 nm. The modified electrode exhibited enhanced sensitivity and stability, enabling the effective detection of totarolone by cyclic voltammetry (CV) and square wave voltammetry (SWV). A linear analytical response was obtained, with a LOD of 1.19 μM, a LOQ of 3.98 μM and a measured concentration of 0.133 mM in the plant extract. These findings highlight the potential of green nanomaterial-based electrochemical sensors for the reliable and sustainable analysis of bioactive compounds.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 4825-4833"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00477b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00477b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diterpenoids such as totarolone exhibit significant bioactivity, making their accurate quantification in plant extracts essential for pharmacological studies and quality control. Conventional analytical methods are often time-consuming, costly, or environmentally demanding, highlighting the need for rapid, sensitive, and eco-friendly alternatives. In this work, we report the electrochemical quantification of totarolone, a bioactive diterpenoid, in Tetraclinis articulata extract using a carbon paste electrode modified with green-synthesized zinc oxide (bio-ZnO) nanoparticles. Bio-ZnO was prepared via a plant-mediated route using Calamintha nepeta extract, providing a sustainable and eco-friendly alternative to conventional chemical synthesis. XRD analysis revealed that the bio-ZnO nanoparticles possess a hexagonal wurtzite structure with an average crystallite size of ∼10 nm. The modified electrode exhibited enhanced sensitivity and stability, enabling the effective detection of totarolone by cyclic voltammetry (CV) and square wave voltammetry (SWV). A linear analytical response was obtained, with a LOD of 1.19 μM, a LOQ of 3.98 μM and a measured concentration of 0.133 mM in the plant extract. These findings highlight the potential of green nanomaterial-based electrochemical sensors for the reliable and sustainable analysis of bioactive compounds.