Daniella V. Martinez, Alberto Rodriguez, Hemant Choudhary, Jay Salinas, Estevan J. Martinez, Oleg Davydovich, Gina M. Geiselman, John M. Gladden, Blake A. Simmons and Michael S. Kent
{"title":"Deconstructing poplar lignin from ionic liquid pretreatment for biological conversion through sulfonation and Fenton chemistry†","authors":"Daniella V. Martinez, Alberto Rodriguez, Hemant Choudhary, Jay Salinas, Estevan J. Martinez, Oleg Davydovich, Gina M. Geiselman, John M. Gladden, Blake A. Simmons and Michael S. Kent","doi":"10.1039/D5SU00039D","DOIUrl":"https://doi.org/10.1039/D5SU00039D","url":null,"abstract":"<p >Generating value from lignin through deconstruction and biological conversion is promising but limited by several factors including lack of economically viable deconstruction methods and low bioconversion of the breakdown products. Due to the complex chemical structure of natural lignins, high yield deconstruction requires cleaving both carbon–carbon and ether bonds. The high strength of C–C bonds poses a great challenge for economically viable high conversion of lignin to valuable products or intermediates. Prior work has shown that a Fenton reaction can efficiently cleave C–C bonds in sulfonated polymers at or near room temperature. In the present work, poplar lignin isolated from a cholinium lysinate ionic liquid pretreatment was sulfonated and then treated with a Fenton reaction using conditions that minimized H<small><sub>2</sub></small>O<small><sub>2</sub></small> and avoided unwanted repolymerization. The deconstruction process was performed at room temperature and ambient pressure. We explored the tradeoff between the extent of deconstruction and the amount of carbon lost as CO<small><sub>2</sub></small>, with total carbon recovered as soluble products ranging up to 40% depending upon conditions. The reaction products were analyzed by size exclusion chromatography, infrared spectroscopy, total dissolved organic carbon and elemental analysis. The results indicated that the products are rich in acid, aldehyde, alcohol, and sulfonate functionalities. A panel of microorganisms were tested for growth using the lignin breakdown products as the sole carbon source and five showed robust growth. A bisabolene-producing strain of <em>Rhodosporidium toruloides</em> was used to demonstrate conversion to product. Several ideas are discussed to improve yields for each step in the process.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 4","pages":" 1721-1728"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00039d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petra Bianchini, Antonella Profumo, Lorenzo Cerri, Costanza Tedesco, Lorenzo Malavasi and Andrea Speltini
{"title":"Exploiting rice industry wastewater for more sustainable sunlight-driven photocatalytic hydrogen production using a graphitic carbon nitride polymorph†","authors":"Petra Bianchini, Antonella Profumo, Lorenzo Cerri, Costanza Tedesco, Lorenzo Malavasi and Andrea Speltini","doi":"10.1039/D4SU00567H","DOIUrl":"https://doi.org/10.1039/D4SU00567H","url":null,"abstract":"<p >This paper shows the results collected in lab-scale experiments for photocatalytic H<small><sub>2</sub></small> evolution from rice industry wastewater, by using a cheap and eco-friendly graphitic carbon nitride catalyst, one-pot prepared by the sacrificial template method. The final effluent from the production of “rice milk” beverage proved to be really rewarding compared to pure water, highlighting the possibility of taking advantage of a sugar-rich matrix to boost H<small><sub>2</sub></small> formation. After preliminary experiments in glucose aqueous solution, yielding a maximum gas evolution above 1000 μmoles g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, the study moved on to wastewater and the operational conditions were optimized through designed experiments, under simulated solar light. Production of about 150 μmoles g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, at least 380-fold greater than production from neat water, was achieved by working with just 0.5 g L<small><sup>−1</sup></small> of catalyst directly in the raw effluent, thus limiting the amount of metal co-catalyst and avoiding sample dilution. The reproducibility of the process was good, with relative standard deviations below 12% (<em>n</em> = 3). The production was also verified under natural sunlight, obtaining a mean production of nearby 115 μmoles g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>. The sustainability of this photocatalytic setup is strengthened by the recyclability of the catalyst, which maintains its photoactivity for at least four treatments.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1149-1156"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00567h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Hoof, Kevinjeorjios Pellumbi, Didem Cansu Güney, Dennis Blaudszun, Franz Bommas, Daniel Siegmund, Kai junge Puring, Rui Cao, Katharina Weber and Ulf-Peter Apfel
{"title":"The best of both worlds: stacked catalytic layers for the electrocatalytic generation of CO in zero-gap electrolysers†","authors":"Lucas Hoof, Kevinjeorjios Pellumbi, Didem Cansu Güney, Dennis Blaudszun, Franz Bommas, Daniel Siegmund, Kai junge Puring, Rui Cao, Katharina Weber and Ulf-Peter Apfel","doi":"10.1039/D4SU00453A","DOIUrl":"https://doi.org/10.1039/D4SU00453A","url":null,"abstract":"<p >Tailoring the properties of the catalytic layer (CL) and its architecture is crucial for enhancing both the efficiency and selectivity of CO<small><sub>2</sub></small> electrolysers. Traditionally, CLs for CO<small><sub>2</sub></small> reduction comprise of a single binder material or a combination that handles both ion conductance and the maintenance of a hydrophobic environment. In this work, we decouple these processes into two individual, stacked catalyst-containing layers. Specifically, a hydrophobic catalytic layer is placed on the gas diffusion layer to improve water management within the CL during CO<small><sub>2</sub></small>R in zero-gap electrolysers. Additionally, a second catalytic layer, bound by an ion-conducting binder, facilitates the conduction of OH<small><sup>−</sup></small> and HCO<small><sub>3</sub></small><small><sup>−</sup></small>/CO<small><sub>3</sub></small><small><sup>2−</sup></small> during CO<small><sub>2</sub></small>R, thereby enhancing both ionic conductivity between the GDE and anion exchange membrane (AEM), as well as mechanical adhesion between different interfaces. Notably, we present a comprehensive stepwise optimization pathway for the CL, addressing both single and stacked CLs for CO<small><sub>2</sub></small>-to-CO conversion at current densities of 300 mA cm<small><sup>−2</sup></small>.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1397-1403"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00453a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuel production capacity and DFT analysis of cation modified perovskites for enhanced thermochemical CO2 dissociation","authors":"Jian Cong, Eric Beche and Stéphane Abanades","doi":"10.1039/D4SU00698D","DOIUrl":"https://doi.org/10.1039/D4SU00698D","url":null,"abstract":"<p >Solar thermochemical redox splitting of CO<small><sub>2</sub></small> using perovskite oxygen carriers in two-step cycles is a promising method for sustainable fuel production. In this study, a series of 23 potential perovskite candidates for CO production are designed, synthesized, and tested under the same experimental conditions. The material stability and the lattice structure are validated using Goldschmidt's tolerance factor and powder X-ray diffraction. For the reduction step, the high proportion of divalent cations (Sr<small><sup>2+</sup></small>/Ba<small><sup>2+</sup></small>/Ca<small><sup>2+</sup></small>) in the A site promotes oxygen transfer, and the maximum oxygen yield reaches 386 μmol g<small><sup>−1</sup></small> (<em>δ</em> = 0.164) for Gd<small><sub>0.6</sub></small>Ca<small><sub>0.4</sub></small>MnO<small><sub>3</sub></small>. DFT calculation results indicate that the multi-cationic doping in La<small><sub>0.5</sub></small>Sr<small><sub>0.2</sub></small>Ba<small><sub>0.15</sub></small>Ca<small><sub>0.15</sub></small>MnO<small><sub>3</sub></small> shows a smaller energy barrier for oxygen transfer compared with the single A-site doping in La<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>MnO<small><sub>3</sub></small>, with an oxygen vacancy formation energy of 2.91 eV per (O atom), and it offers the most favorable CO yields of 225 and 227 μmol g<small><sup>−1</sup></small> in two consecutive cycles. The designed La<small><sub>0.25</sub></small>Gd<small><sub>0.25</sub></small>Sr<small><sub>0.25</sub></small>Ca<small><sub>0.25</sub></small>MnO<small><sub>3</sub></small> further decreases the oxygen vacancy formation energy to 2.57 eV per (O atom). Based on the reaction rate analysis, the presence of B-site doping cations, such as in La<small><sub>0.6</sub></small>Sr<small><sub>0.4</sub></small>Mn<small><sub>0.75</sub></small>Zr<small><sub>0.25</sub></small>O<small><sub>3</sub></small> and La<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>Mn<small><sub>0.8</sub></small>Ce<small><sub>0.2</sub></small>O<small><sub>3</sub></small>, increases the maximum oxidation rate, and the A-site multi doping of perovskites allows maintaining high CO production rates during the oxidation process. This work leverages tunable perovskite redox properties for enhanced CO production performance through DFT and thermochemical performance analysis, providing feasible guidance to promote CO<small><sub>2</sub></small> splitting by an active cation doping strategy.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1550-1563"},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00698d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gad Licht, Ethan Peltier, Simon Gee and Stuart Licht
{"title":"Direct air capture (DAC): molten carbonate direct transformation of airborne CO2 to durable, useful carbon nanotubes and nano-onions†","authors":"Gad Licht, Ethan Peltier, Simon Gee and Stuart Licht","doi":"10.1039/D4SU00679H","DOIUrl":"https://doi.org/10.1039/D4SU00679H","url":null,"abstract":"<p >This study introduces the concept and first demonstration of an effective molten carbonate chemistry for Direct Air Capture (DAC). Molten carbonate electrolysis is a high-temperature decarbonization process within Carbon Capture, Utilization and Storage (CCUS) that transforms chemistry transforming flue gas CO<small><sub>2</sub></small> into carbon nanotubes and carbon nano-onions. The key challenge for molten carbonate DAC is to split air's 0.04% CO<small><sub>2</sub></small> without heating the remaining 99.6%. This is accomplished by integrating a diffusive, insulating membrane over an electrolyte with a high affinity for CO<small><sub>2</sub></small>.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1339-1345"},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00679h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of Calotropis procera and Ceiba pentandra fibre-based filters used to separate oil from emulsified effluent","authors":"Chandra Jeet Singh, Samrat Mukhopadhyay, Raju Seenivasan Rengasamy, Mayuri Srivastava and Ranjna Kumari","doi":"10.1039/D5SU00068H","DOIUrl":"https://doi.org/10.1039/D5SU00068H","url":null,"abstract":"<p >This research compared the filters made of kapok and milkweed fibres, which separated 5 μm and 2 μm droplets from oily wastewater with 5% oil concentration. Kapok and milkweed fibre coalescence filters were constructed with varying porosity and bed heights, specifically 10 mm, 20 mm, and 30 mm. The emulsion was pumped at a rate of 2 mL min<small><sup>−1</sup></small> through the filter column by a peristaltic pump. Methods employed in calculating oil concentration, oil droplet size, oil saturation, experimental calculations, and other tests were conducted. This research contributes to the development of efficient filtration materials by comparing kapok and milkweed fibres for separating oily wastewater droplets. A key quantitative finding is that the milkweed fibre filter achieved a higher separation efficiency of 93%, compared to 89.6% for the kapok fibre filter, at a bed height of 30 mm and 0.98 porosity. According to the study, milkweed fibre beds had a lower oil saturation than kapok fibre filters. As the number of filter cycles increases, the oil saturation in the bed decreases significantly.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 4","pages":" 1751-1761"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00068h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activated carbon derived from rice husks enhanced by methylene blue and gamma irradiation for supercapacitor applications†","authors":"Thannithi Anusonthiwong, Natavoranun Suwatanapongched, Jittiyada Surawattanawiset, Nattamon Chittreisin, Somlak Ittisanronnachai, Tanagorn Sangtawesin and Suranan Anantachaisilp","doi":"10.1039/D4SU00701H","DOIUrl":"https://doi.org/10.1039/D4SU00701H","url":null,"abstract":"<p >Electrodes for supercapacitors were developed from activated carbon (GAC) derived from glutinous rice husk (GRH). The production of GAC involved the chemical activation of GRH with potassium hydroxide (KOH), followed by carbonization at 800 °C for 2 hours under a N<small><sub>2</sub></small> atmosphere. The pseudocapacitive effects of the GAC were enhanced through N/S doping by adsorption of methylene blue, followed by post-treatment. Two post-treatment methods were employed in this study: gamma irradiation at doses of 25 kGy (GAC-25), 50 kGy (GAC-50), and 100 kGy (GAC-100), and hydrothermal treatment (GAC-Hdt). Among all samples, GAC-25 exhibited the highest specific capacitance of 127.9 F g<small><sup>−1</sup></small> at 0.5 A g<small><sup>−1</sup></small>, an 84.8% enhancement compared to GAC alone, attributed to pseudocapacitive effects. GAC-25 shows pseudocapacitor behavior, while GAC-Hdt shows EDLC characteristics at an increased scan rate. GAC-Hdt possessed a specific capacitance value of 0.5 A g<small><sup>−1</sup></small>, about four-fold higher than that of GAC-25, due to its larger specific surface area of 1846 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. These results highlight the potential use of gamma irradiation as an alternative post-treatment method for developing supercapacitor electrodes.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1507-1515"},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00701h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesper T. N. Knijnenburg, Siraprapa Suwanree, Duncan Macquarrie, Pornnapa Kasemsiri and Kaewta Jetsrisuparb
{"title":"Phosphorus recovery from animal manures through pyrolysis: phosphorus transformations, release mechanisms, and applications of manure biochars in agriculture","authors":"Jesper T. N. Knijnenburg, Siraprapa Suwanree, Duncan Macquarrie, Pornnapa Kasemsiri and Kaewta Jetsrisuparb","doi":"10.1039/D4SU00524D","DOIUrl":"https://doi.org/10.1039/D4SU00524D","url":null,"abstract":"<p >Phosphorus (P) is a vital element to enhance crop growth, but the excessive application of water-soluble P fertilizers has led to dwindling global P resources and elevated P levels in surface and ground waters. At the same time, high levels of P are excreted by livestock and poultry industries. These animal manures present an attractive source of secondary P, but the direct application of manures to farmlands may cause issues with P losses and environmental and health risks. To overcome this, pyrolysis (the thermal conversion of a biomass in oxygen-poor conditions) has been used in some situations without a full understanding of the impacts of the pyrolysis process on P forms and availability in the manure. This article critically reviews the use of pyrolysis to recover P from three types of animal manures (cow, swine, and poultry) in the form of biochars for applications in agriculture. Specific emphasis is paid to the P species in manures and their transformations during the pyrolysis process with the help of spectroscopic techniques (<em>e.g.</em>, <small><sup>31</sup></small>P NMR and XANES) and P fractionation schemes. The P concentrations, species, and availability are highly dependent on manure composition and especially pyrolysis conditions. During pyrolysis, the P is concentrated in the solid phase (biochar) and transformed into more inorganic (orthophosphate) and more crystalline forms as the pyrolysis temperature increases. Higher pyrolysis temperatures reduce the P extractability, which lowers the risk for P losses but may also affect plant P uptake. Strategies to modify P availability are presented and critical perspectives are given on the risks and limitations of manure-derived biochar application in agriculture.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1084-1101"},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00524d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finding suitable biobased solvents for extractions from water†","authors":"Gerhard König, Pascal Hauk and Fabrice Gallou","doi":"10.1039/D4SU00628C","DOIUrl":"https://doi.org/10.1039/D4SU00628C","url":null,"abstract":"<p >Solvent usage is one of the most critical factors for the carbon footprint of the chemical and pharmaceutical industries. Therefore, finding suitable green solvents that can be sourced from biomass is necessary for more sustainable manufacturing processes. One of the greenest solvents is water, and chemical transformations in aqueous solution play an increasingly important role. To guide the search for suitable green solvents for extractions from aqueous solution, eleven biobased solvents were systematically evaluated with 132 absolute free energy calculations based on 1728 molecular dynamics simulations. These kinds of calculations are used in modern computer-aided drug discovery for protein–ligand binding because of their high accuracy and the ability to account for dynamic changes of heterogenous nanostructures. Based on the calculations, 1-butanol and cyclopentanol are recommended for extractions of hydrophilic molecules with a decadic logarithm of the partition coefficient between 1-octanol and water (log <em>P</em>) below 0.5, while cyclopentyl methyl ether and butyl methyl ether are recommended for hydrophobic solutes with log <em>P</em> > 2.6. Ethyl acetate and 1-pentanol are suitable for solutes in the mid-range. These findings are verified based on experimental extraction efficiencies from an aqueous solution in a micelle-enabled cross-coupling transformation. The extraction yields confirm the computational results, and also show that only the six most hydrophilic solvents lead to a clear phase separation in the presence of residual organic solvents and surfactants. This highlights that aqueous micellar media require special extraction solvents. Overall, both molecular level insight and practical considerations are needed for the selection of suitable green solvents.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1539-1549"},"PeriodicalIF":0.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00628c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reusability studies with Lewis and Brønsted acid catalysts for dehydration of the primary alcohol 1-hexanol under energy-saving conditions†","authors":"Adil Allahverdiyev and Harald Gröger","doi":"10.1039/D4SU00642A","DOIUrl":"https://doi.org/10.1039/D4SU00642A","url":null,"abstract":"<p >In general, currently there is an urgent need to switch from fossil-based materials to renewable resources and this is also the case for production of alkenes with a chain length of up to C<small><sub>6</sub></small> due to their broad application range as bulk chemicals. For instance, such C<small><sub>6</sub></small> alkenes (hexenes) are accessible from 1-hexanol, for which recently a sustainable technical approach based on CO<small><sub>2</sub></small> and water as renewable raw materials was reported by Siemens and Evonik Industries, making use of artificial photosynthesis in combination with microbial syngas fermentation. In continuation of our very recent comprehensive study on dehydration of 1-hexanol and other alcohols with a focus on Lewis acids and initial reusability studies over a few reaction cycles, the current study presents a simplified strategy for the reuse of the Lewis acid catalysts Cu(OTf)<small><sub>2</sub></small> and Hf(OTf)<small><sub>4</sub></small> and the Brønsted acid TfOH as well as a proof-of-concept for efficient recycling over 20 cycles. Over the course of the study, the catalysts demonstrated an average alkene yield of 71–77%, with no loss of activity. The production costs were calculated on the basis of industry-appropriate prices, with the lowest being 0.34 $ per kg. A successful initial lab scale-up with a 100-fold increase in reaction volume indicates a TRL4 for the developed process and enabled a product formation of 1.3 kg. Thus, these studies underline the technical feasibility of the developed dehydration process using 1-hexanol, for which catalyst recycling represents a key criterion.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 4","pages":" 1923-1931"},"PeriodicalIF":0.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00642a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}