Fuel production capacity and DFT analysis of cation modified perovskites for enhanced thermochemical CO2 dissociation

Jian Cong, Eric Beche and Stéphane Abanades
{"title":"Fuel production capacity and DFT analysis of cation modified perovskites for enhanced thermochemical CO2 dissociation","authors":"Jian Cong, Eric Beche and Stéphane Abanades","doi":"10.1039/D4SU00698D","DOIUrl":null,"url":null,"abstract":"<p >Solar thermochemical redox splitting of CO<small><sub>2</sub></small> using perovskite oxygen carriers in two-step cycles is a promising method for sustainable fuel production. In this study, a series of 23 potential perovskite candidates for CO production are designed, synthesized, and tested under the same experimental conditions. The material stability and the lattice structure are validated using Goldschmidt's tolerance factor and powder X-ray diffraction. For the reduction step, the high proportion of divalent cations (Sr<small><sup>2+</sup></small>/Ba<small><sup>2+</sup></small>/Ca<small><sup>2+</sup></small>) in the A site promotes oxygen transfer, and the maximum oxygen yield reaches 386 μmol g<small><sup>−1</sup></small> (<em>δ</em> = 0.164) for Gd<small><sub>0.6</sub></small>Ca<small><sub>0.4</sub></small>MnO<small><sub>3</sub></small>. DFT calculation results indicate that the multi-cationic doping in La<small><sub>0.5</sub></small>Sr<small><sub>0.2</sub></small>Ba<small><sub>0.15</sub></small>Ca<small><sub>0.15</sub></small>MnO<small><sub>3</sub></small> shows a smaller energy barrier for oxygen transfer compared with the single A-site doping in La<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>MnO<small><sub>3</sub></small>, with an oxygen vacancy formation energy of 2.91 eV per (O atom), and it offers the most favorable CO yields of 225 and 227 μmol g<small><sup>−1</sup></small> in two consecutive cycles. The designed La<small><sub>0.25</sub></small>Gd<small><sub>0.25</sub></small>Sr<small><sub>0.25</sub></small>Ca<small><sub>0.25</sub></small>MnO<small><sub>3</sub></small> further decreases the oxygen vacancy formation energy to 2.57 eV per (O atom). Based on the reaction rate analysis, the presence of B-site doping cations, such as in La<small><sub>0.6</sub></small>Sr<small><sub>0.4</sub></small>Mn<small><sub>0.75</sub></small>Zr<small><sub>0.25</sub></small>O<small><sub>3</sub></small> and La<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>Mn<small><sub>0.8</sub></small>Ce<small><sub>0.2</sub></small>O<small><sub>3</sub></small>, increases the maximum oxidation rate, and the A-site multi doping of perovskites allows maintaining high CO production rates during the oxidation process. This work leverages tunable perovskite redox properties for enhanced CO production performance through DFT and thermochemical performance analysis, providing feasible guidance to promote CO<small><sub>2</sub></small> splitting by an active cation doping strategy.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1550-1563"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00698d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00698d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar thermochemical redox splitting of CO2 using perovskite oxygen carriers in two-step cycles is a promising method for sustainable fuel production. In this study, a series of 23 potential perovskite candidates for CO production are designed, synthesized, and tested under the same experimental conditions. The material stability and the lattice structure are validated using Goldschmidt's tolerance factor and powder X-ray diffraction. For the reduction step, the high proportion of divalent cations (Sr2+/Ba2+/Ca2+) in the A site promotes oxygen transfer, and the maximum oxygen yield reaches 386 μmol g−1 (δ = 0.164) for Gd0.6Ca0.4MnO3. DFT calculation results indicate that the multi-cationic doping in La0.5Sr0.2Ba0.15Ca0.15MnO3 shows a smaller energy barrier for oxygen transfer compared with the single A-site doping in La0.5Sr0.5MnO3, with an oxygen vacancy formation energy of 2.91 eV per (O atom), and it offers the most favorable CO yields of 225 and 227 μmol g−1 in two consecutive cycles. The designed La0.25Gd0.25Sr0.25Ca0.25MnO3 further decreases the oxygen vacancy formation energy to 2.57 eV per (O atom). Based on the reaction rate analysis, the presence of B-site doping cations, such as in La0.6Sr0.4Mn0.75Zr0.25O3 and La0.5Sr0.5Mn0.8Ce0.2O3, increases the maximum oxidation rate, and the A-site multi doping of perovskites allows maintaining high CO production rates during the oxidation process. This work leverages tunable perovskite redox properties for enhanced CO production performance through DFT and thermochemical performance analysis, providing feasible guidance to promote CO2 splitting by an active cation doping strategy.

Abstract Image

燃料生产能力和增强热化学CO2解离的阳离子改性钙钛矿的DFT分析
利用钙钛矿氧载体进行太阳能热化学氧化还原裂解CO2的两步循环是一种很有前途的可持续燃料生产方法。在本研究中,在相同的实验条件下,设计、合成了一系列23种可能用于CO生产的候选钙钛矿,并对其进行了测试。利用Goldschmidt公差系数和粉末x射线衍射验证了材料的稳定性和晶格结构。在还原步骤中,高比例的二价阳离子(Sr2+/Ba2+/Ca2+)在A位点促进了氧的转移,Gd0.6Ca0.4MnO3的最大产氧量达到386 μmol g−1 (δ = 0.164)。DFT计算结果表明,La0.5Sr0.2Ba0.15Ca0.15MnO3中的多阳离子掺杂比La0.5Sr0.5MnO3中的单a位掺杂表现出更小的氧转移能垒,氧空位形成能为2.91 eV / (O原子),连续两个循环的CO产率分别为225和227 μmol g−1。设计的La0.25Gd0.25Sr0.25Ca0.25MnO3进一步降低氧空位形成能至2.57 eV / (O原子)。根据反应速率分析,b位掺杂阳离子(如La0.6Sr0.4Mn0.75Zr0.25O3和La0.5Sr0.5Mn0.8Ce0.2O3)的存在提高了最大氧化速率,而钙钛矿的a位多掺杂可以在氧化过程中保持较高的CO产率。本研究利用可调钙钛矿氧化还原特性,通过DFT和热化学性能分析来增强CO生产性能,为通过活性阳离子掺杂策略促进CO2分裂提供了可行的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信