Lucas Hoof, Kevinjeorjios Pellumbi, Didem Cansu Güney, Dennis Blaudszun, Franz Bommas, Daniel Siegmund, Kai junge Puring, Rui Cao, Katharina Weber and Ulf-Peter Apfel
{"title":"The best of both worlds: stacked catalytic layers for the electrocatalytic generation of CO in zero-gap electrolysers†","authors":"Lucas Hoof, Kevinjeorjios Pellumbi, Didem Cansu Güney, Dennis Blaudszun, Franz Bommas, Daniel Siegmund, Kai junge Puring, Rui Cao, Katharina Weber and Ulf-Peter Apfel","doi":"10.1039/D4SU00453A","DOIUrl":null,"url":null,"abstract":"<p >Tailoring the properties of the catalytic layer (CL) and its architecture is crucial for enhancing both the efficiency and selectivity of CO<small><sub>2</sub></small> electrolysers. Traditionally, CLs for CO<small><sub>2</sub></small> reduction comprise of a single binder material or a combination that handles both ion conductance and the maintenance of a hydrophobic environment. In this work, we decouple these processes into two individual, stacked catalyst-containing layers. Specifically, a hydrophobic catalytic layer is placed on the gas diffusion layer to improve water management within the CL during CO<small><sub>2</sub></small>R in zero-gap electrolysers. Additionally, a second catalytic layer, bound by an ion-conducting binder, facilitates the conduction of OH<small><sup>−</sup></small> and HCO<small><sub>3</sub></small><small><sup>−</sup></small>/CO<small><sub>3</sub></small><small><sup>2−</sup></small> during CO<small><sub>2</sub></small>R, thereby enhancing both ionic conductivity between the GDE and anion exchange membrane (AEM), as well as mechanical adhesion between different interfaces. Notably, we present a comprehensive stepwise optimization pathway for the CL, addressing both single and stacked CLs for CO<small><sub>2</sub></small>-to-CO conversion at current densities of 300 mA cm<small><sup>−2</sup></small>.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1397-1403"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00453a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00453a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tailoring the properties of the catalytic layer (CL) and its architecture is crucial for enhancing both the efficiency and selectivity of CO2 electrolysers. Traditionally, CLs for CO2 reduction comprise of a single binder material or a combination that handles both ion conductance and the maintenance of a hydrophobic environment. In this work, we decouple these processes into two individual, stacked catalyst-containing layers. Specifically, a hydrophobic catalytic layer is placed on the gas diffusion layer to improve water management within the CL during CO2R in zero-gap electrolysers. Additionally, a second catalytic layer, bound by an ion-conducting binder, facilitates the conduction of OH− and HCO3−/CO32− during CO2R, thereby enhancing both ionic conductivity between the GDE and anion exchange membrane (AEM), as well as mechanical adhesion between different interfaces. Notably, we present a comprehensive stepwise optimization pathway for the CL, addressing both single and stacked CLs for CO2-to-CO conversion at current densities of 300 mA cm−2.
调整催化层(CL)的性质及其结构对于提高CO2电解槽的效率和选择性至关重要。传统上,用于二氧化碳还原的CLs由单一粘结剂材料或处理离子电导率和维持疏水环境的组合组成。在这项工作中,我们将这些过程解耦成两个单独的、堆叠的含有催化剂的层。具体而言,在气体扩散层上放置疏水催化层,以改善零间隙电解槽CO2R过程中CL内的水管理。此外,由离子导电粘合剂结合的第二催化层促进了CO2R过程中OH−和HCO3−/CO32−的导电,从而增强了GDE和阴离子交换膜(AEM)之间的离子电导率以及不同界面之间的机械粘附。值得注意的是,我们提出了一个全面的逐步优化CL的途径,解决了单个和堆叠CL在300 mA cm - 2电流密度下的co2到co转换。