Aerospace medicine and human performance最新文献

筛选
英文 中文
Cover-to-Cover. 封面到封面
IF 0.9 4区 医学
{"title":"Cover-to-Cover.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"1-74"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
This Month in Aerospace Medicine History: January. 航空航天医学史上的这个月:一月
IF 0.9 4区 医学
Aerospace medicine and human performance Pub Date : 2024-01-01 DOI: 10.3357/AMHP.6398.2024
{"title":"This Month in Aerospace Medicine History: January.","authors":"","doi":"10.3357/AMHP.6398.2024","DOIUrl":"10.3357/AMHP.6398.2024","url":null,"abstract":"","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"65-66"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miscellaneous Ads. 杂项广告。
IF 0.9 4区 医学
{"title":"Miscellaneous Ads.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"ii"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
G-Induced Loss of Consciousness Prediction Using a Support Vector Machine. 使用支持向量机预测 G 诱导的意识丧失。
IF 0.9 4区 医学
Aerospace medicine and human performance Pub Date : 2024-01-01 DOI: 10.3357/AMHP.6301.2024
Nobuhiro Ohrui, Yuji Iino, Koichiro Kuramoto, Azusa Kikukawa, Koji Okano, Kunio Takada, Tetsuya Tsujimoto
{"title":"G-Induced Loss of Consciousness Prediction Using a Support Vector Machine.","authors":"Nobuhiro Ohrui, Yuji Iino, Koichiro Kuramoto, Azusa Kikukawa, Koji Okano, Kunio Takada, Tetsuya Tsujimoto","doi":"10.3357/AMHP.6301.2024","DOIUrl":"10.3357/AMHP.6301.2024","url":null,"abstract":"<p><p><b>INTRODUCTION:</b> Gravity-induced loss of consciousness (G-LOC) is a major threat to fighter pilots and may result in fatal accidents. The brain has a period of 5-6 s from the onset of high +G<sub>z</sub> exposure, called the functional buffer period, during which transient ischemia is tolerated without loss of consciousness. We tried to establish a method for predicting G-LOC within the functional buffer period by using machine learning. We used a support vector machine (SVM), which is a popular classification algorithm in machine learning.<b>METHODS:</b> The subjects were 124 flight course students. We used a linear soft-margin SVM, a nonlinear SVM Gaussian kernel function (GSVM), and a polynomial kernel function, for each of which 10 classifiers were built every 0.5 s from the onset of high +G<sub>z</sub> exposure (Classifiers 0.5-5.0) to predict G-LOC. Explanatory variables used for each SVM were age, height, weight, with/without anti-G suit, +G<sub>z</sub> level, cerebral oxyhemoglobin concentration, and deoxyhemoglobin concentration.<b>RESULTS:</b> The performance of GSVM was better than that of other SVMs. The accuracy of each classifier of GSVM was as follows: Classifier 0.5, 58.1%; 1.0, 54.8%; 1.5, 57.3%; 2.0, 58.1%; 2.5, 64.5%; 3.0, 63.7%; 3.5, 65.3%; 4.0, 64.5%; 4.5, 64.5%; and 5.0, 64.5%.<b>CONCLUSION:</b> We could predict G-LOC with an accuracy rate of approximately 65% from 2.5 s after the onset of high +G<sub>z</sub> exposure by using GSVM. Analysis of a larger number of cases and factors to enhance accuracy may be needed to apply those classifiers in centrifuge training and actual flight.<b>Ohrui N, Iino Y, Kuramoto K, Kikukawa A, Okano K, Takada K, Tsujimoto T. <i>G-induced loss of consciousness prediction using a support vector machine</i>. Aerosp Med Hum Perform. 2024; 95(1):29-36.</b></p>","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"29-36"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
69th ICASM-An Excellent Event. 第 69 届国际采矿和金属理事会--一次精彩的活动。
IF 0.9 4区 医学
Aerospace medicine and human performance Pub Date : 2024-01-01 DOI: 10.3357/AMHP.951PP.2024
Joseph Dervay
{"title":"69th ICASM-An Excellent Event.","authors":"Joseph Dervay","doi":"10.3357/AMHP.951PP.2024","DOIUrl":"10.3357/AMHP.951PP.2024","url":null,"abstract":"","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"3-4"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents. 内容
IF 0.9 4区 医学
{"title":"Contents.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"i"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What a Ride It's Been: Farewell and Welcome. 一路走好告别与欢迎
IF 0.9 4区 医学
Aerospace medicine and human performance Pub Date : 2024-01-01 DOI: 10.3357/AMHP.951Editorial.2024
Frederick Bonato
{"title":"What a Ride It's Been: Farewell and Welcome.","authors":"Frederick Bonato","doi":"10.3357/AMHP.951Editorial.2024","DOIUrl":"10.3357/AMHP.951Editorial.2024","url":null,"abstract":"","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"1-2"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personal Hypoxia Symptoms Vary Widely Within Individuals. 个人的缺氧症状因人而异。
IF 0.9 4区 医学
Aerospace medicine and human performance Pub Date : 2024-01-01 DOI: 10.3357/AMHP.6338.2023
Brennan D Cox, Daniel G McHail, Kara J Blacker
{"title":"Personal Hypoxia Symptoms Vary Widely Within Individuals.","authors":"Brennan D Cox, Daniel G McHail, Kara J Blacker","doi":"10.3357/AMHP.6338.2023","DOIUrl":"10.3357/AMHP.6338.2023","url":null,"abstract":"<p><p><b>INTRODUCTION:</b> Exposure to high ambient altitudes above 10,000 ft (3048 m) over sea level during aviation can present the risk of hypobaric hypoxia. Hypoxia can impair sensory and cognitive functions, degrading performance and leading to mishaps. Military aircrew undergo regular hypoxia familiarization training to recognize their symptoms and understand the consequences of hypoxia. However, over the years, aviators have come to believe that individuals have a \"personal hypoxia signature.\" The idea is that intraindividual variability in symptom experience during repeated exposure is low. In other words, individuals will experience the same symptoms during hypoxia from day to day, year to year.<b>METHODS:</b> We critically reviewed the existing literature on this hypothesis. Most studies that claim to support the notion of a signature only examine group-level data, which do not inform individual-level consistency. Other studies use inappropriate statistical methods, while still others do not control for accuracy of recall over the period of years. To combat these shortcomings, we present a dataset of 91 individuals who completed nearly identical mask-off, normobaric hypoxia exposures days apart.<b>RESULTS:</b> We found that for every symptom on the Hypoxia Symptom Questionnaire, at least half of the subjects reported the symptom inconsistently across repeated exposure. This means that, at best, 50% of subjects did not report the same symptom across exposures.<b>DISCUSSION:</b> These data provide compelling evidence against the existence of hypoxia signatures. We urge that hypoxia familiarization training incorporate these findings and encourage individuals to expect a wide range of hypoxia symptoms upon repeated exposure.<b>Cox BD, McHail DG, Blacker KJ. <i>Personal hypoxia symptoms vary widely within individuals</i>. Aerosp Med Hum Perform. 2024; 95(1):54-58.</b></p>","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"54-58"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sleep-Monitoring Technology Progress and Its Application in Space. 睡眠监测技术的进步及其在太空中的应用。
IF 0.9 4区 医学
Aerospace medicine and human performance Pub Date : 2024-01-01 DOI: 10.3357/AMHP.6249.2023
Cheng Zhang, Ying Chen, Zhiqi Fan, Bingmu Xin, Bin Wu, Ke Lv
{"title":"Sleep-Monitoring Technology Progress and Its Application in Space.","authors":"Cheng Zhang, Ying Chen, Zhiqi Fan, Bingmu Xin, Bin Wu, Ke Lv","doi":"10.3357/AMHP.6249.2023","DOIUrl":"10.3357/AMHP.6249.2023","url":null,"abstract":"<p><p><b>INTRODUCTION:</b> Sleep is an indispensable physiological phenomenon. The complexity of sleep and the time it occupies in human life determine that its quality is positively correlated with human health. Since polysomnography was used in spaceflight in 1967, the sleep problem during astronaut flight has been studied in depth for more than 50 yr, and many solutions have been proposed, but astronauts have always had sleep problems during orbital flight. Insufficient sleep and changes in the rhythm of human sleep-wake activity will lead to disturbance of the human body's internal rhythm indicators, which will lead to psychological and emotional fluctuations and reduced cognitive ability, decision-making ability, teamwork, and work performance. NASA has identified operational errors due to sleep deprivation and altered circadian rhythms as an important risk factor in the key biomedical roadmap for long-term flight, so the importance of sleep monitoring in spaceflight is self-evident. On-orbit sleep-monitoring methods include both subjective and objective aspects. We review objective sleep-monitoring technology based on its application, main monitoring physiological indicators, intrusive advantages, and limitations. This paper reviews the subjective and objective sleep evaluation methods for on-orbit applications, summarizes the progress, advantages, and disadvantages of current ground sleep-monitoring technologies and equipment, and looks forward to the application prospects of new sleep-monitoring technologies in spaceflight.<b>Zhang C, Chen Y, Fan Z, Xin B, Wu B, Lv K. <i>Sleep-monitoring technology progress and its application in space</i>. Aerosp Med Hum Perform. 2024; 95(1):37-44.</b></p>","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"37-44"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcranial Direct Current Stimulation and Aviator Performance During Simulated Flight. 经颅直流电刺激与飞行员在模拟飞行中的表现
IF 0.9 4区 医学
Aerospace medicine and human performance Pub Date : 2024-01-01 DOI: 10.3357/AMHP.6243.2024
Kathryn A Feltman, Amanda M Kelley
{"title":"Transcranial Direct Current Stimulation and Aviator Performance During Simulated Flight.","authors":"Kathryn A Feltman, Amanda M Kelley","doi":"10.3357/AMHP.6243.2024","DOIUrl":"10.3357/AMHP.6243.2024","url":null,"abstract":"<p><p><b>INTRODUCTION:</b> Transcranial direct current stimulation (tDCS) is a promising method for maintaining cognitive performance. Anticipated changes in rotary-wing aircraft are expected to alter aviator performance.<b>METHODS:</b> A single-blind, randomized, sham-controlled study evaluated effects of 2-mA anodal tDCS to the right posterior parietal cortex on aviator performance within a Black Hawk simulator. A mixed design with one between-subjects factor was assessed: stimulation prior to flight (20 constant min) and during flight (two timepoints for 10 min each). The within-subjects factor included active vs. sham stimulation. Randomly assigned to each stimulation group were 22 aviators. Aircraft state metrics derived from the simulator were used to evaluate performance. Subjects completed two flights (active stimulation and sham stimulation) with an in-flight emergency introduced at the end to assess whether the timing of tDCS application (prior or during flight) affected the ability to maintain attention and respond to an unexpected event.<b>RESULTS:</b> Results found active stimulation during flight produced statistically significant improvements in performance during the approach following the in-flight emergency. Subjects maintained a more precise approach path with glideslope values closer to zero (M = 0.05) compared to the prior-to-flight group (M = 0.15). The same was found for localizer values (during flight, M = 0.07; prior to flight, M = 0.17). There were no statistically significant differences between groups on secondary outcome measures.<b>DISCUSSION:</b> These findings suggest stimulation during flight may assist in maintaining cognitive resources necessary to respond to an unexpected in-flight emergency. Moreover, blinding efficacy was supported with 32% of subjects correctly guessing when active stimulation was being delivered (52% correctly guessed the sham condition).<b>Feltman KA, Kelley AM. <i>Transcranial direct current stimulation and aviator performance during simulated flight</i>. Aerosp Med Hum Perform. 2024; 95(1):5-15.</b></p>","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 1","pages":"5-15"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信