Progress in biomedical engineering (Bristol, England)最新文献

筛选
英文 中文
In silico simulation: a key enabling technology for next-generation intelligent surgical systems 硅片模拟:下一代智能手术系统的关键使能技术
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-05-04 DOI: 10.1088/2516-1091/acd28b
Benjamin Killeen, Sue Min Cho, M. Armand, Russell H. Taylor, M. Unberath
{"title":"In silico simulation: a key enabling technology for next-generation intelligent surgical systems","authors":"Benjamin Killeen, Sue Min Cho, M. Armand, Russell H. Taylor, M. Unberath","doi":"10.1088/2516-1091/acd28b","DOIUrl":"https://doi.org/10.1088/2516-1091/acd28b","url":null,"abstract":"To mitigate the challenges of operating through narrow incisions under image guidance, there is a desire to develop intelligent systems that assist decision making and spatial reasoning in minimally invasive surgery (MIS). In this context, machine learning-based systems for interventional image analysis are receiving considerable attention because of their flexibility and the opportunity to provide immediate, informative feedback to clinicians. It is further believed that learning-based image analysis may eventually form the foundation for semi- or fully automated delivery of surgical treatments. A significant bottleneck in developing such systems is the availability of annotated images with sufficient variability to train generalizable models, particularly the most recently favored deep convolutional neural networks or transformer architectures. A popular alternative to acquiring and manually annotating data from the clinical practice is the simulation of these data from human-based models. Simulation has many advantages, including the avoidance of ethical issues, precisely controlled environments, and the scalability of data collection. Here, we survey recent work that relies on in silico training of learning-based MIS systems, in which data are generated via computational simulation. For each imaging modality, we review available simulation tools in terms of compute requirements, image quality, and usability, as well as their applications for training intelligent systems. We further discuss open challenges for simulation-based development of MIS systems, such as the need for integrated imaging and physical modeling for non-optical modalities, as well as generative patient models not dependent on underlying computed tomography, MRI, or other patient data. In conclusion, as the capabilities of in silico training mature, with respect to sim-to-real transfer, computational efficiency, and degree of control, they are contributing toward the next generation of intelligent surgical systems.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48183611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point of care approaches to 3D bioprinting for wound healing applications 用于伤口愈合应用的3D生物打印的护理点方法
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-04-20 DOI: 10.1088/2516-1091/acceeb
Eileen R. Wallace, Z. Yue, M. Dottori, F. Wood, M. Fear, G. Wallace, S. Beirne
{"title":"Point of care approaches to 3D bioprinting for wound healing applications","authors":"Eileen R. Wallace, Z. Yue, M. Dottori, F. Wood, M. Fear, G. Wallace, S. Beirne","doi":"10.1088/2516-1091/acceeb","DOIUrl":"https://doi.org/10.1088/2516-1091/acceeb","url":null,"abstract":"In the quest to improve both aesthetic and functional outcomes for patients, the clinical care of full-thickness cutaneous wounds has undergone significant development over the past decade. A shift from replacement to regeneration has prompted the development of skin substitute products, however, inaccurate replication of host tissue properties continues to stand in the way of realising the ultimate goal of scar-free healing. Advances in three-dimensional (3D) bioprinting and biomaterials used for tissue engineering have converged in recent years to present opportunities to progress this field. However, many of the proposed bioprinting strategies for wound healing involve lengthy in-vitro cell culture and construct maturation periods, employ complex deposition technologies, and lack credible point of care (POC) delivery protocols. In-situ bioprinting is an alternative strategy which can combat these challenges. In order to survive the journey to bedside, printing protocols must be curated, and biomaterials/cells selected which facilitate intraoperative delivery. In this review, the current status of in-situ 3D bioprinting systems for wound healing applications is discussed, highlighting the delivery methods employed, biomaterials/cellular components utilised and anticipated translational challenges. We believe that with the growth of collaborative networks between researchers, clinicians, commercial, ethical, and regulatory experts, in-situ 3D bioprinting has the potential to transform POC wound care treatment.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42040025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The potential of in vitro neuronal networks cultured on micro electrode arrays for biomedical research 在微电极阵列上培养的体外神经元网络在生物医学研究中的潜力
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-04-18 DOI: 10.1088/2516-1091/acce12
Marta Cerina, M. Piastra, M. Frega
{"title":"The potential of in vitro neuronal networks cultured on micro electrode arrays for biomedical research","authors":"Marta Cerina, M. Piastra, M. Frega","doi":"10.1088/2516-1091/acce12","DOIUrl":"https://doi.org/10.1088/2516-1091/acce12","url":null,"abstract":"In vitro neuronal models have become an important tool to study healthy and diseased neuronal circuits. The growing interest of neuroscientists to explore the dynamics of neuronal systems and the increasing need to observe, measure and manipulate not only single neurons but populations of cells pushed for technological advancement. In this sense, micro-electrode arrays (MEAs) emerged as a promising technique, made of cell culture dishes with embedded micro-electrodes allowing non-invasive and relatively simple measurement of the activity of neuronal cultures at the network level. In the past decade, MEAs popularity has rapidly grown. MEA devices have been extensively used to measure the activity of neuronal cultures mainly derived from rodents. Rodent neuronal cultures on MEAs have been employed to investigate physiological mechanisms, study the effect of chemicals in neurotoxicity screenings, and model the electrophysiological phenotype of neuronal networks in different pathological conditions. With the advancements in human induced pluripotent stem cells (hiPSCs) technology, the differentiation of human neurons from the cells of adult donors became possible. hiPSCs-derived neuronal networks on MEAs have been employed to develop patient-specific in vitro platforms to characterize the pathophysiological phenotype and to test drugs, paving the way towards personalized medicine. In this review, we first describe MEA technology and the information that can be obtained from MEA recordings. Then, we give an overview of studies in which MEAs have been used in combination with different neuronal systems (i.e. rodent 2D and three-dimensional (3D) neuronal cultures, organotypic brain slices, hiPSCs-derived 2D and 3D neuronal cultures, and brain organoids) for biomedical research, including physiology studies, neurotoxicity screenings, disease modeling, and drug testing. We end by discussing potential, challenges and future perspectives of MEA technology, and providing some guidance for the choice of the neuronal model and MEA device, experimental design, data analysis and reporting for scientific publications.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42643253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of in silico models of cerebral blood flow in health and pathology 脑血流计算机模型在健康和病理学中的研究进展
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-04-12 DOI: 10.1088/2516-1091/accc62
Stephen Payne, T. Józsa, W. El-Bouri
{"title":"Review of in silico models of cerebral blood flow in health and pathology","authors":"Stephen Payne, T. Józsa, W. El-Bouri","doi":"10.1088/2516-1091/accc62","DOIUrl":"https://doi.org/10.1088/2516-1091/accc62","url":null,"abstract":"In this review, we provide a summary of the state-of-the-art in the in silico modelling of cerebral blood flow (CBF) and its application in in silico clinical trials. CBF plays a key role in the transport of nutrients, including oxygen and glucose, to brain cells, and the cerebral vasculature is a highly complex, multi-scale, dynamic system that acts to ensure that supply and demand of these nutrients are continuously balanced. It also plays a key role in the transport of other substances, such as recombinant tissue-plasminogen activator, to brain tissue. Any dysfunction in CBF can rapidly lead to cell death and permanent damage to brain regions, leading to loss of bodily functions and death. The complexity of the cerebral vasculature and the difficulty in obtaining accurate anatomical information combine to make mathematical models of CBF key in understanding brain supply, diagnosis of cerebrovascular disease, quantification of the effects of thrombi, selection of the optimum intervention, and neurosurgical planning. Similar in silico models have now been widely applied in a variety of body organs (most notably in the heart), but models of CBF are still far behind. The increased availability of experimental data in the last 15 years however has enabled these models to develop more rapidly and this progress is the focus of this review. We thus present a brief review of the cerebral vasculature and the mathematical foundations that underpin CBF in both the microvasculature and the macrovasculature. We also demonstrate how such models can be applied in the context of cerebral diseases and show how this work has recently been expanded to in silico trials for the first time. Most work to date in this context has been performed for ischaemic stroke or cerebral aneurysms, but these in-silico models have many other applications in neurodegenerative diseases where mathematical models have a vital role to play in testing hypotheses and providing test beds for clinical interventions.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42143049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review. 疾病诊断和预后中图像和非图像数据的深度多模式融合:综述。
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-04-11 DOI: 10.1088/2516-1091/acc2fe
Can Cui, Haichun Yang, Yaohong Wang, Shilin Zhao, Zuhayr Asad, Lori A Coburn, Keith T Wilson, Bennett A Landman, Yuankai Huo
{"title":"Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review.","authors":"Can Cui,&nbsp;Haichun Yang,&nbsp;Yaohong Wang,&nbsp;Shilin Zhao,&nbsp;Zuhayr Asad,&nbsp;Lori A Coburn,&nbsp;Keith T Wilson,&nbsp;Bennett A Landman,&nbsp;Yuankai Huo","doi":"10.1088/2516-1091/acc2fe","DOIUrl":"10.1088/2516-1091/acc2fe","url":null,"abstract":"<p><p>The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data that are produced during routine practice. For instance, the personalized diagnosis and treatment planning for a single cancer patient relies on various images (e.g. radiology, pathology and camera images) and non-image data (e.g. clinical data and genomic data). However, such decision-making procedures can be subjective, qualitative, and have large inter-subject variabilities. With the recent advances in multimodal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multimodal information to ultimately provide more objective, quantitative computer-aided clinical decision making? This paper reviews the recent studies on dealing with such a question. Briefly, this review will include the (a) overview of current multimodal learning workflows, (b) summarization of multimodal fusion methods, (c) discussion of the performance, (d) applications in disease diagnosis and prognosis, and (e) challenges and future directions.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9715702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Advancing treatment of retinal disease through in silico trials 通过计算机试验推进视网膜疾病的治疗
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-03-29 DOI: 10.1088/2516-1091/acc8a9
R. Hernández, P. A. Roberts, W. El-Bouri
{"title":"Advancing treatment of retinal disease through in silico trials","authors":"R. Hernández, P. A. Roberts, W. El-Bouri","doi":"10.1088/2516-1091/acc8a9","DOIUrl":"https://doi.org/10.1088/2516-1091/acc8a9","url":null,"abstract":"Treating retinal diseases to prevent sight loss is an increasingly important challenge. Thanks to the configuration of the eye, the retina can be examined relatively easily in situ. Owing to recent technological development in scanning devices, much progress has been made in understanding the structure of the retina and characterising retinal biomarkers. However, treatment options remain limited and are often of low efficiency and efficacy. In recent years, the concept of in silico clinical trials (ISCTs) has been adopted by many pharmaceutical companies to optimise and accelerate the development of therapeutics. ISCTs rely on the use of mathematical models based on the physical and biochemical mechanisms underpinning a biological system. With appropriate simplifications and assumptions, one can generate computer simulations of various treatment regimens, new therapeutic molecules, delivery strategies and so forth, rapidly and at a fraction of the cost required for the equivalent experiments. Such simulations have the potential not only to hasten the development of therapies and strategies but also to optimise the use of existing therapeutics. In this paper, we review the state-of-the-art in in silico models of the retina for mathematicians, biomedical scientists and clinicians, highlighting the challenges to developing ISCTs. Throughout this paper, we highlight key findings from in silico models about the physiology of the retina in health and disease. We describe the main building blocks of ISCTs and identify challenges to developing ISCTs of retinal diseases.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43960746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Wearable upper limb robotics for pervasive health: a review 用于普及健康的可穿戴上肢机器人:综述
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-03-23 DOI: 10.1088/2516-1091/acc70a
Chukwuemeka Ochieze, Soroush Zare, Ye Sun
{"title":"Wearable upper limb robotics for pervasive health: a review","authors":"Chukwuemeka Ochieze, Soroush Zare, Ye Sun","doi":"10.1088/2516-1091/acc70a","DOIUrl":"https://doi.org/10.1088/2516-1091/acc70a","url":null,"abstract":"Wearable robotics, also called exoskeletons, have been engineered for human-centered assistance for decades. They provide assistive technologies for maintaining and improving patients’ natural capabilities towards self-independence and also enable new therapy solutions for rehabilitation towards pervasive health. Upper limb exoskeletons can significantly enhance human manipulation with environments, which is crucial to patients’ independence, self-esteem, and quality of life. For long-term use in both in-hospital and at-home settings, there are still needs for new technologies with high comfort, biocompatibility, and operability. The recent progress in soft robotics has initiated soft exoskeletons (also called exosuits), which are based on controllable and compliant materials and structures. Remarkable literature reviews have been performed for rigid exoskeletons ranging from robot design to different practical applications. Due to the emerging state, few have been focused on soft upper limb exoskeletons. This paper aims to provide a systematic review of the recent progress in wearable upper limb robotics including both rigid and soft exoskeletons with a focus on their designs and applications in various pervasive healthcare settings. The technical needs for wearable robots are carefully reviewed and the assistance and rehabilitation that can be enhanced by wearable robotics are particularly discussed. The knowledge from rigid wearable robots may provide practical experience and inspire new ideas for soft exoskeleton designs. We also discuss the challenges and opportunities of wearable assistive robotics for pervasive health.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47172917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biorealistic hand prosthesis with compliance control and noninvasive somatotopic sensory feedback 具有顺应性控制和无创体位感觉反馈的仿生手
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-03-21 DOI: 10.1088/2516-1091/acc625
N. Lan, Jie Zhang, Zhuozhi Zhang, Chih-hong Chou, W. Rymer, C. Niu, Peng Fang
{"title":"Biorealistic hand prosthesis with compliance control and noninvasive somatotopic sensory feedback","authors":"N. Lan, Jie Zhang, Zhuozhi Zhang, Chih-hong Chou, W. Rymer, C. Niu, Peng Fang","doi":"10.1088/2516-1091/acc625","DOIUrl":"https://doi.org/10.1088/2516-1091/acc625","url":null,"abstract":"Significant advances have been made to improve control and to provide sensory functions for bionic hands. However, great challenges remain, limiting wide acceptance of bionic hands due to inadequate bidirectional neural compatibility with human users. Recent research has brought to light the necessity for matching neuromechanical behaviors between the prosthesis and the sensorimotor system of amputees. A novel approach to achieving greater neural compatibility leverages the technology of biorealistic modeling with real-time computation. These studies have demonstrated a promising outlook that this unique approach may transform the performance of hand prostheses. Simultaneously, a noninvasive technique of somatotopic sensory feedback has been developed based on evoked tactile sensation (ETS) for conveying natural, intuitive, and digit-specific tactile information to users. This paper reports the recent work on these two important aspects of sensorimotor functions in prosthetic research. A background review is presented first on the state of the art of bionic hand and the various techniques to deliver tactile sensory information to users. Progress in developing the novel biorealistic hand prosthesis and the technique of noninvasive ETS feedback is then highlighted. Finally, challenges to future development of the biorealistic hand prosthesis and implementing the ETS feedback are discussed with respect to shaping a next-generation hand prosthesis.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46884755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The creation of breast lesion models for mammographic virtual clinical trials: a topical review 乳腺病变模型的创建用于乳房x线摄影虚拟临床试验:局部回顾
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-03-16 DOI: 10.1088/2516-1091/acc4fc
A. Van Camp, K. Houbrechts, L. Cockmartin, H. Woodruff, P. Lambin, N. Marshall, H. Bosmans
{"title":"The creation of breast lesion models for mammographic virtual clinical trials: a topical review","authors":"A. Van Camp, K. Houbrechts, L. Cockmartin, H. Woodruff, P. Lambin, N. Marshall, H. Bosmans","doi":"10.1088/2516-1091/acc4fc","DOIUrl":"https://doi.org/10.1088/2516-1091/acc4fc","url":null,"abstract":"Simulated breast lesion models, including microcalcification clusters and masses, have been used in several studies. Realistic lesion models are required for virtual clinical trials to be representative of clinical performance. Multiple methods exist to generate breast lesion models with various levels of realism depending on the application. First, lesion models can be obtained using mathematical methods, such as approximating a lesion with 3D geometric shapes or using algorithmic techniques such as iterative processes to grow a lesion. On the other hand, lesion models can be based on patient data. They can be either created starting from characteristics of real lesions or they can be a replica of clinical lesions by segmenting real cancer cases. Next, various approaches exist to embed these lesions into breast structures to create tumour cases. The simplest method, typically used for calcifications, is intensity scaling. Two other common approaches are the hybrid and total simulation method, in which the lesion model is inserted into a real breast image or a 3D breast model, respectively. In addition, artificial intelligence-based approaches can directly grow breast lesions in breast images. This article provides a review of the literature available on the development of lesion models, simulation methods to insert them into background structures and their applications, including optimisation studies, performance evaluation of software and education.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43811196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Soft robotics for physical simulators, artificial organs and implantable assistive devices 用于物理模拟器、人造器官和植入式辅助装置的软机器人技术
Progress in biomedical engineering (Bristol, England) Pub Date : 2023-01-23 DOI: 10.1088/2516-1091/acb57a
Debora Zrinscak, Lucrezia Lorenzon, M. Maselli, M. Cianchetti
{"title":"Soft robotics for physical simulators, artificial organs and implantable assistive devices","authors":"Debora Zrinscak, Lucrezia Lorenzon, M. Maselli, M. Cianchetti","doi":"10.1088/2516-1091/acb57a","DOIUrl":"https://doi.org/10.1088/2516-1091/acb57a","url":null,"abstract":"In recent years, soft robotics technologies enabled the development of a new generation of biomedical devices. The combination of elastomeric materials with tunable properties and muscle-like motions paved the way toward more realistic phantoms and innovative soft active implants as artificial organs or assistive mechanisms. This review collects the most relevant studies in the field, giving some insights about their distribution in the past 10 years, their level of development and opening a discussion about the most commonly employed materials and actuating technologies. The reported results show some promising trends, highlighting that the soft robotics approach can help replicate specific material characteristics in the case of static or passive organs but also reproduce peculiar natural motion patterns for the realization of dynamic phantoms or implants. At the same time, some important challenges still need to be addressed. However, by joining forces with other research fields and disciplines, it will be possible to get one step closer to the development of complex, active, self-sensing and deformable structures able to replicate as closely as possible the typical properties and functionalities of our natural body organs.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46700065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信