基于脑电图的认知工作量检测的实验范例和深度神经网络的系统回顾。

IF 5 Q1 ENGINEERING, BIOMEDICAL
Vishnu K N, Cota Navin Gupta
{"title":"基于脑电图的认知工作量检测的实验范例和深度神经网络的系统回顾。","authors":"Vishnu K N, Cota Navin Gupta","doi":"10.1088/2516-1091/ad8530","DOIUrl":null,"url":null,"abstract":"<p><p>This article summarizes a systematic literature review of deep neural network-based cognitive workload (CWL) estimation from electroencephalographic (EEG) signals. The focus of this article can be delineated into two main elements: first is the identification of experimental paradigms prevalently employed for CWL induction, and second, is an inquiry about the data structure and input formulations commonly utilized in deep neural networks (DNN)-based CWL detection. The survey revealed several experimental paradigms that can reliably induce either graded levels of CWL or a desired cognitive state due to sustained induction of CWL. This article has characterized them with respect to the number of distinct CWL levels, cognitive states, experimental environment, and agents in focus. Further, this literature analysis found that DNNs can successfully detect distinct levels of CWL despite the inter-subject and inter-session variability typically observed in EEG signals. Several methodologies were found using EEG signals in its native representation of a two-dimensional matrix as input to the classification algorithm, bypassing traditional feature selection steps. More often than not, researchers used DNNs as black-box type models, and only a few studies employed interpretable or explainable DNNs for CWL detection. However, these algorithms were mostly post hoc data analysis and classification schemes, and only a few studies adopted real-time CWL estimation methodologies. Further, it has been suggested that using interpretable deep learning methodologies may shed light on EEG correlates of CWL, but this remains mostly an unexplored area. This systematic review suggests using networks sensitive to temporal dependencies and appropriate input formulations for each type of DNN architecture to achieve robust classification performance. An additional suggestion is to utilize transfer learning methods to achieve high generalizability across tasks (task-independent classifiers), while simple cross-subject data pooling may achieve the same for subject-independent classifiers.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"6 4","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic review of experimental paradigms and deep neural networks for electroencephalography-based cognitive workload detection.\",\"authors\":\"Vishnu K N, Cota Navin Gupta\",\"doi\":\"10.1088/2516-1091/ad8530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article summarizes a systematic literature review of deep neural network-based cognitive workload (CWL) estimation from electroencephalographic (EEG) signals. The focus of this article can be delineated into two main elements: first is the identification of experimental paradigms prevalently employed for CWL induction, and second, is an inquiry about the data structure and input formulations commonly utilized in deep neural networks (DNN)-based CWL detection. The survey revealed several experimental paradigms that can reliably induce either graded levels of CWL or a desired cognitive state due to sustained induction of CWL. This article has characterized them with respect to the number of distinct CWL levels, cognitive states, experimental environment, and agents in focus. Further, this literature analysis found that DNNs can successfully detect distinct levels of CWL despite the inter-subject and inter-session variability typically observed in EEG signals. Several methodologies were found using EEG signals in its native representation of a two-dimensional matrix as input to the classification algorithm, bypassing traditional feature selection steps. More often than not, researchers used DNNs as black-box type models, and only a few studies employed interpretable or explainable DNNs for CWL detection. However, these algorithms were mostly post hoc data analysis and classification schemes, and only a few studies adopted real-time CWL estimation methodologies. Further, it has been suggested that using interpretable deep learning methodologies may shed light on EEG correlates of CWL, but this remains mostly an unexplored area. This systematic review suggests using networks sensitive to temporal dependencies and appropriate input formulations for each type of DNN architecture to achieve robust classification performance. An additional suggestion is to utilize transfer learning methods to achieve high generalizability across tasks (task-independent classifiers), while simple cross-subject data pooling may achieve the same for subject-independent classifiers.</p>\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ad8530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ad8530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了基于深度神经网络的脑电信号认知负荷估计的相关文献。本文的重点可以概括为两个主要元素:首先是识别普遍用于CWL归纳的实验范式,其次是对基于深度神经网络(DNN)的CWL检测中常用的数据结构和输入公式的研究。该研究揭示了几种实验范式,它们可以可靠地诱导CWL的分级水平或由于持续诱导CWL而达到期望的认知状态。本文从不同CWL水平的数量、认知状态、实验环境和关注的主体等方面对它们进行了描述。此外,本文献分析发现,尽管在EEG信号中通常观察到主体间和会话间的变化,但dnn可以成功检测到不同水平的CWL。我们找到了几种方法,使用二维矩阵的原生表示的脑电图信号作为分类算法的输入,绕过传统的特征选择步骤。通常情况下,研究人员使用dnn作为黑盒型模型,只有少数研究使用可解释或可解释的dnn进行CWL检测。然而,这些算法大多是事后数据分析和分类方案,只有少数研究采用了实时CWL估计方法。此外,有人建议使用可解释的深度学习方法可以阐明脑电图与CWL的相关性,但这仍然是一个未开发的领域。该系统综述建议使用对时间依赖性敏感的网络和针对每种DNN架构的适当输入公式来实现稳健的分类性能。另一个建议是利用迁移学习方法来实现跨任务(任务独立分类器)的高泛化性,而简单的跨主题数据池可以实现相同的主题独立分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic review of experimental paradigms and deep neural networks for electroencephalography-based cognitive workload detection.

This article summarizes a systematic literature review of deep neural network-based cognitive workload (CWL) estimation from electroencephalographic (EEG) signals. The focus of this article can be delineated into two main elements: first is the identification of experimental paradigms prevalently employed for CWL induction, and second, is an inquiry about the data structure and input formulations commonly utilized in deep neural networks (DNN)-based CWL detection. The survey revealed several experimental paradigms that can reliably induce either graded levels of CWL or a desired cognitive state due to sustained induction of CWL. This article has characterized them with respect to the number of distinct CWL levels, cognitive states, experimental environment, and agents in focus. Further, this literature analysis found that DNNs can successfully detect distinct levels of CWL despite the inter-subject and inter-session variability typically observed in EEG signals. Several methodologies were found using EEG signals in its native representation of a two-dimensional matrix as input to the classification algorithm, bypassing traditional feature selection steps. More often than not, researchers used DNNs as black-box type models, and only a few studies employed interpretable or explainable DNNs for CWL detection. However, these algorithms were mostly post hoc data analysis and classification schemes, and only a few studies adopted real-time CWL estimation methodologies. Further, it has been suggested that using interpretable deep learning methodologies may shed light on EEG correlates of CWL, but this remains mostly an unexplored area. This systematic review suggests using networks sensitive to temporal dependencies and appropriate input formulations for each type of DNN architecture to achieve robust classification performance. An additional suggestion is to utilize transfer learning methods to achieve high generalizability across tasks (task-independent classifiers), while simple cross-subject data pooling may achieve the same for subject-independent classifiers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信