Progress in biomedical engineering (Bristol, England)最新文献

筛选
英文 中文
Post-stroke upper limb rehabilitation: clinical practices, compensatory movements, assessment, and trends. 中风后上肢康复:临床实践,代偿运动,评估和趋势。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-07-23 DOI: 10.1088/2516-1091/adeb1e
Cláudia D Rocha, Ismael Carneiro, Marta Torres, Hélder P Oliveira, E J Solteiro Pires, Manuel F Silva
{"title":"Post-stroke upper limb rehabilitation: clinical practices, compensatory movements, assessment, and trends.","authors":"Cláudia D Rocha, Ismael Carneiro, Marta Torres, Hélder P Oliveira, E J Solteiro Pires, Manuel F Silva","doi":"10.1088/2516-1091/adeb1e","DOIUrl":"https://doi.org/10.1088/2516-1091/adeb1e","url":null,"abstract":"<p><p>Stroke, a vascular disorder affecting the nervous system, is the third-leading cause of death and disability combined worldwide. One in every four people aged 25 and older will face the consequences of this condition, which typically causes loss of limb function, among other disabilities. The proposed review analyzes the mechanisms of stroke and their influence on the disease outcome, highlighting the critical role of rehabilitation in promoting recovery of the upper limb (UL) and enhancing the quality of life of stroke survivors. Common outcome measures and the specific targeted UL features are described, along with emerging supplementary therapies found in the literature. Stroke survivors often develop compensatory strategies to cope with limitations in UL function, which must be detected and corrected during rehabilitation to facilitate long-term recovery. Recent research on the automated detection of compensatory movements has explored pressure, wearable, marker-based motion capture systems, and vision sensors. Although current approaches have certain limitations, they establish a strong foundation for future innovations in post-stroke UL rehabilitation, promoting a more effective recovery.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 4","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144692725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mechanisms associated with the interaction of external electromagnetic fields in protein dynamics and aggregation: a focus on amyloid-βpeptide. 外部电磁场在蛋白质动力学和聚集中的相互作用的分子机制:以淀粉样蛋白-β肽为重点。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-07-17 DOI: 10.1088/2516-1091/adea02
Maldonado-Moreles Alejandro, Bonilla-Jaime Herlinda, Diana I Aparicio-Bautista, Mondragón-Rodríguez Siddhartha, Michael Overduin, Gustavo Basurto-Islas
{"title":"Molecular mechanisms associated with the interaction of external electromagnetic fields in protein dynamics and aggregation: a focus on amyloid-<i>β</i>peptide.","authors":"Maldonado-Moreles Alejandro, Bonilla-Jaime Herlinda, Diana I Aparicio-Bautista, Mondragón-Rodríguez Siddhartha, Michael Overduin, Gustavo Basurto-Islas","doi":"10.1088/2516-1091/adea02","DOIUrl":"10.1088/2516-1091/adea02","url":null,"abstract":"<p><p>Transcranial stimulation has emerged as a non-invasive treatment that applies electrical currents and magnetic fields to regulate brain functions. Previous studies have shown that magnetic stimulation modulates the dynamics of charged molecules in biological systems. In some pathologies, once the electrical or magnetic field is applied directly to subjects, it can interact with, and alter, abnormally folded proteins, including amyloid-<i>β</i>peptides and their aggregates, reducing cognitive impairments. While our understanding of the molecular mechanisms underlying the interaction between amyloid-<i>β</i>peptide and the physical forces generated by electrical or magnetic stimulation remains unclear, observations show that these stimuli exert attractive and repulsive forces while interacting with the charged groups of peptide side chains as well as lipids. These interactions influence hydrophobic packing and secondary structure, ultimately inducing alterations in aggregation kinetics. The study of structural models of amyloidogenic proteins aids in understanding the mechanisms involved in the protein aggregation process and suggests possible therapeutic applications. This review examines proposed molecular mechanisms to explain the modulatory effects of external electromagnetic fields on the dynamics of proteins and their complexes that regulate pathological processes associated with amyloid-<i>β</i>peptide fibrillation.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144531544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of small bowel length measurement: methodological challenges and variability factors. 小肠长度测量的综合综述:方法学的挑战和可变性因素。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-07-07 DOI: 10.1088/2516-1091/ade8c1
Maria Vittoria Mascolini, Lorenza Bonaldi, Ilaria Toniolo, Alice Berardo, Mirto Foletto, Marta Zerunian, Damiano Caruso, Gianfranco Silecchia, Mario Musella, Niccolò Petrucciani, Chiara Giulia Fontanella
{"title":"A comprehensive review of small bowel length measurement: methodological challenges and variability factors.","authors":"Maria Vittoria Mascolini, Lorenza Bonaldi, Ilaria Toniolo, Alice Berardo, Mirto Foletto, Marta Zerunian, Damiano Caruso, Gianfranco Silecchia, Mario Musella, Niccolò Petrucciani, Chiara Giulia Fontanella","doi":"10.1088/2516-1091/ade8c1","DOIUrl":"10.1088/2516-1091/ade8c1","url":null,"abstract":"<p><p>The measurement of small bowel length (SBL) is crucial in clinical contexts such as surgical planning, assessment of nutritional absorption and management of conditions like short bowel syndrome (SBS) and Crohn's disease (CD). However, the literature reports substantial variations in measurements of average SBL, influenced by a multitude of methodological and patient-specific factors. The present review provides a comprehensive analysis of existing methodologies for SBL measurement, including intraoperative and radiologic approaches, detailing their strengths, limitations, and sources of error. The key factors influencing measurement variability are discussed, including methodological differences related to the measurement tool (e.g. intraoperative vs. imaging-based), bowel preparation process (e.g. stretching of the bowel), starting reference points. Additionally, inter-individual characteristics (e.g. height, BMI, sex) and population-specific factors (e.g. patients with SBS or CD) are assessed for their contribution to SBL variability. The aim pertains to informing clinical practice by providing a critical evaluation of measurement techniques and variability factors that impair standardized measurements of SBL to support research for clinical practice.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144509911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A guide to articular cartilage functioning: a comprehensive review, current challenges and mechanobiological solutions. 关节软骨功能指南:全面回顾,当前挑战和机械生物学解决方案。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-07-07 DOI: 10.1088/2516-1091/ade83a
Sofia Oliveira, Betina B Hinckel, Filipe S Silva, Óscar Carvalho, Ana Leal
{"title":"A guide to articular cartilage functioning: a comprehensive review, current challenges and mechanobiological solutions.","authors":"Sofia Oliveira, Betina B Hinckel, Filipe S Silva, Óscar Carvalho, Ana Leal","doi":"10.1088/2516-1091/ade83a","DOIUrl":"10.1088/2516-1091/ade83a","url":null,"abstract":"<p><p>Articular cartilage exhibits a remarkable mechanical and biological performance, which allows it to withstand high stresses and strains with minimal deformation, lasting decades of continuous use without failure. Upon damage, its self-repair is naturally difficult, being its regeneration a serious challenge today with current therapies failing in restoring the natural environment of this tissue. The present review delves deeply into the biomechanical functioning of articular cartilage, giving special attention to the interplay between its structure and composition with its mechanical behaviour at both tissue and cellular levels. The mechanisms by which articular cartilage responds to injury are highlighted to comprehend how this tissue is naturally damaged and how it could be regenerated, considering its native functioning. The current options for clinical evaluation and treatment are summarized. Drawing inspiration from the natural environment of articular cartilage and the mechanisms responsible for its health homeostasis, the application of optical and acoustic stimulation is proposed as mechanobiological solutions for promoting cartilage regeneration, followed by a final discussion on its current challenges and future perspectives. This review highlights the articular cartilage mechanical and biological functioning at both tissue and cellular level, elucidating strategies and challenges of articular cartilage regeneration in clinical research.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144499722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of lubrication in function and degeneration of articular cartilage: A critical review and perspectives. 润滑在关节软骨功能和退变中的作用:一个重要的回顾和观点。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-06-25 DOI: 10.1088/2516-1091/ade839
Arshad Kalathil Ashik, Michele Santeramo, David L Burris, Carmine Putignano, Daniele Dini
{"title":"The role of lubrication in function and degeneration of articular cartilage: A critical review and perspectives.","authors":"Arshad Kalathil Ashik, Michele Santeramo, David L Burris, Carmine Putignano, Daniele Dini","doi":"10.1088/2516-1091/ade839","DOIUrl":"https://doi.org/10.1088/2516-1091/ade839","url":null,"abstract":"<p><p>Articular cartilage is a porous, soft tissue present in the synovial joints that distributes the load and lubricate the joint for smooth body movements. Arthritis or joint diseases lead to cartilage degeneration. However, the triggering factors of these joint diseases are still strongly debated, with uncertainties about the key mechanisms and the mechanochemical and biological interactions that make this a very complex interdisciplinary problem.&#xD;Nonetheless, mechanical stresses and improper lubrication are widely accepted as important contributors to cartilage degeneration. Hence, this review paper focuses on the friction, lubrication, and biomechanical aspects that affect cartilage function and are, therefore, linked to its degeneration. Further, cartilage lubrication theories that have been proposed to study ultra-low friction of cartilage will be discussed. Over the past decade, there has been significant advancement in understanding cartilage rehydration and how different activities keep cartilage lubricated; these will be reviewed together with the advances in experimental and modelling techniques that have enabled recent breakthroughs in our understanding.&#xD;The need for new and improved methodologies in experimental and modelling work to deepen our understanding of cartilage biomechanics across the scales, as well as its evolution and degeneration will be discussed. Finally, with the widespread use of artificial intelligence (AI) and machine learning (ML) in scientific research, this paper explores the avenues in which AI and ML can contribute to enhancing the ongoing research on cartilage.&#xD.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144499723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on production of collagen-like proteins by expression in Escherichia coli. 胶原样蛋白在大肠杆菌中的表达研究进展。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-06-20 DOI: 10.1088/2516-1091/ade106
John A M Ramshaw, Veronica Glattauer, Jerome A Werkmeister
{"title":"Progress on production of collagen-like proteins by expression in Escherichia coli.","authors":"John A M Ramshaw, Veronica Glattauer, Jerome A Werkmeister","doi":"10.1088/2516-1091/ade106","DOIUrl":"10.1088/2516-1091/ade106","url":null,"abstract":"<p><p>The use of<i>E. coli</i>for the expression of various collagen-like triple helical protein constructs has continued to develop significantly, and certain commercially made proteins are now available. The use of auxotroph designs to assist in the expression of hydroxylated proteins is an important development. A range of other new constructs have been described, including those that contain a segment of a natural collagen sequence and those that are based on collagen-like proteins from prokaryotes, especially the Scl2 protein from<i>Streptococcus pyogenes</i>. The other constructs that have gained increased attention are those where multiple copies, often 16, of a small native collagen sequence are expressed as tandem repeated sequences, with these being of particular interest for biomedical applications. Ascertaining which construct is being used, however, can create difficulties when the same acronym is used for different constructs, and many are frequently described as 'humanized' even though no sequence changes have been included to make the construct resemble a human sequence more closely.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144227888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing cellular functionality for targeted cancer therapy: advancements in cell-drug conjugates and their mechanisms of action. 利用细胞功能进行靶向癌症治疗:细胞药物偶联物及其作用机制的进展。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-06-16 DOI: 10.1088/2516-1091/ade212
Yan Liu, Rui Yin, Yuan Tian, Xin Meng
{"title":"Harnessing cellular functionality for targeted cancer therapy: advancements in cell-drug conjugates and their mechanisms of action.","authors":"Yan Liu, Rui Yin, Yuan Tian, Xin Meng","doi":"10.1088/2516-1091/ade212","DOIUrl":"https://doi.org/10.1088/2516-1091/ade212","url":null,"abstract":"<p><p>Could the next major advancement in cancer therapy stem from utilizing the body's own cells to precisely deliver potent anti-cancer agents directly to tumors? This innovative strategy, known as cell-drug conjugates (CDCs), represents a transformative approach to targeted cancer treatment by leveraging the inherent biological properties of cells. Leveraging the inherent biological properties of cells, these conjugates enable highly specific drug delivery and enhance therapeutic efficacy. Through mechanisms such as chemotaxis and immune evasion, CDCs can transport anticancer agents across biological barriers and selectively accumulate within the tumor microenvironment, facilitating precision therapy. Various cell types, including red blood cells, stem cells, and immune cells, serve as potential carriers in these systems, each possessing unique biological characteristics and antitumor ability. At present, there are few reviews on the preparation and function of CDCs in cancer therapy. This review systematically explores CDC applications in cancer therapy, including targeting mechanisms, fabrication strategies,<i>in vivo</i>pharmacology, and clinical advancements. Furthermore, the review examines the technical challenges associated with this innovative drug delivery and therapeutic strategy, while also evaluating its potential for clinical translation.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 3","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144303908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow-induced particle migration microfluidics-the experimenter's comprehensive review. 流动诱导的微粒迁移微流体学——实验者的综合综述。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-06-06 DOI: 10.1088/2516-1091/add77b
David Poustka, Jaromir Havlica, David Kramoliš, Anna Paříková, Francisco J Galindo-Rosales, Marcel Štofik, Jan Malý
{"title":"Flow-induced particle migration microfluidics-the experimenter's comprehensive review.","authors":"David Poustka, Jaromir Havlica, David Kramoliš, Anna Paříková, Francisco J Galindo-Rosales, Marcel Štofik, Jan Malý","doi":"10.1088/2516-1091/add77b","DOIUrl":"10.1088/2516-1091/add77b","url":null,"abstract":"<p><p>Building upon the extensive body of work in inertial, viscoelastic, and elasto-inertial microfluidics-collectively classified as flow-induced particle migration microfluidics (FIPMM)-this review delivers an exhaustive synthesis of theoretical foundations and practical advancements in the field. The focus is centered on leveraging microfluidic platforms for the effective separation and manipulation of nanoscale particles such as exosomes. Highlighting the unique advantages and practical challenges of these methods, the review bridges the gap between theory and application. By exploring the interplay of inertial and elastic forces, this work demonstrates the potential for enhanced resolution, throughput, and scalability in particle separation without the need for chemical labeling. In addition, it addresses key limitations such as device fabrication constraints, material properties, and operational reproducibility, providing strategic information to researchers and engineers. By addressing these challenges, this review intends to guide new entrants in the field and contribute to the general advancement of this area of research.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144031080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and perspectives in using finite element modeling to advance 3D bioprinting. 使用有限元建模推进生物3D打印的挑战和前景。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-05-30 DOI: 10.1088/2516-1091/addb19
Anahita Ahmadi Soufivand, Sang Jin Lee, Tomasz Jüngst, Silvia Budday
{"title":"Challenges and perspectives in using finite element modeling to advance 3D bioprinting.","authors":"Anahita Ahmadi Soufivand, Sang Jin Lee, Tomasz Jüngst, Silvia Budday","doi":"10.1088/2516-1091/addb19","DOIUrl":"10.1088/2516-1091/addb19","url":null,"abstract":"<p><p>As an emerging additive manufacturing technique, three-dimensional bioprinting enables precise control over the fabrication of tissue replacements, surpassing the limitations of conventional biofabrication methods. However, the successful production of functional bioprinted constructs remains challenging due to the complex interplay of numerous process parameters. The finite element method (FEM) has proven to be a powerful computational tool in biomedical research, offering a means to simulate and optimize various aspects of the bioprinting process. This review systematically examines the diverse applications of FEM across the three key stages of extrusion-based bioprinting-pre-printing, printing, and post-printing-one of the most widely adopted bioprinting technologies. FEM enables the prediction and optimization of tissue construct properties before fabrication by simulating both<i>in vitro</i>and<i>in vivo</i>loading conditions, providing valuable insights into critical yet experimentally inaccessible parameters, such as internal stress distributions and mechanical deformations. By enhancing the understanding of these factors, FEM contributes to the development of mechanically stable and biologically functional bioprinted structures. Additionally, FEM-driven simulations facilitate the optimization of bioprinting parameters, reducing material consumption, improving reproducibility, and accelerating the design process. Despite its significant contributions, existing FEM tools remain constrained in their ability to capture the highly dynamic and multi-scale nature of bioprinting completely. Future advancements should enhance the accurate representation of real-time cell-matrix interactions, bioink dynamics, and the progressive maturation of bioprinted constructs. By refining FEM simulations and embedding them into adaptive bioprinting workflows, this computational approach has the potential to drive transformative innovations in tissue engineering, regenerative medicine, and organ fabrication.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144112946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hand exoprosthesis mechatronic structure and actuation approaches: a systematic review of recent developments and trends. 手外假体机电结构与驱动方法:近期发展与趋势的系统回顾。
IF 5
Progress in biomedical engineering (Bristol, England) Pub Date : 2025-05-23 DOI: 10.1088/2516-1091/add8d5
João Nunes, Pedro Sousa, Susana Dias, Paulo Tavares, Pedro Moreira
{"title":"Hand exoprosthesis mechatronic structure and actuation approaches: a systematic review of recent developments and trends.","authors":"João Nunes, Pedro Sousa, Susana Dias, Paulo Tavares, Pedro Moreira","doi":"10.1088/2516-1091/add8d5","DOIUrl":"10.1088/2516-1091/add8d5","url":null,"abstract":"<p><p>Hand exoprosthesis are commonly assumed as a promising approach to help people regain independence after upper limb losses. Injury-related data from recent years highlights the need to continue developing solutions to increase end-user acceptance. Within this scope, the present review aims to provide up-to-date information related on advancements and current trends in hand exoprosthesis development. Following a PRISMA methodology, 60 studies were included in this review covering a different range of actuation strategies and design approaches. The main features of the devices developed in the literature are also presented in detail. Concerning actuation strategies, linkage-driven and tendon-pulley mechanisms are the most common approaches presented in the literature, however different strategies such as twisted-string actuators differential mechanisms are also proposed. In turn, pneumatic and hydraulic actuation approaches are also presented as soft alternatives to electric motors. Passive elements such as springs or clutch mechanisms are frequently employed to achieve underactuation in these devices. 3D Printed technologies are also suggested as alternatives to the most conventional manufacturing methods. By covering all these topics, the present review is meant to provide useful insights into future developments in this field. End-user-oriented continuous improvement and the development of highly anthropomorphic solutions are still current challenges, that should be addressed in upcoming developments. This work was developed in the scope of the project 'NerveRepack-Intelligent neural system for bidirectional connection with exoprostheses and exoskeletons', which has received funding from the Horizon Europe RIA programme under grant agreement N<sup>∘</sup>101112347.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信