Systematic review of experimental paradigms and deep neural networks for electroencephalography-based cognitive workload detection.

IF 5 Q1 ENGINEERING, BIOMEDICAL
Vishnu K N, Cota Navin Gupta
{"title":"Systematic review of experimental paradigms and deep neural networks for electroencephalography-based cognitive workload detection.","authors":"Vishnu K N, Cota Navin Gupta","doi":"10.1088/2516-1091/ad8530","DOIUrl":null,"url":null,"abstract":"<p><p>This article summarizes a systematic literature review of deep neural network-based cognitive workload (CWL) estimation from electroencephalographic (EEG) signals. The focus of this article can be delineated into two main elements: first is the identification of experimental paradigms prevalently employed for CWL induction, and second, is an inquiry about the data structure and input formulations commonly utilized in deep neural networks (DNN)-based CWL detection. The survey revealed several experimental paradigms that can reliably induce either graded levels of CWL or a desired cognitive state due to sustained induction of CWL. This article has characterized them with respect to the number of distinct CWL levels, cognitive states, experimental environment, and agents in focus. Further, this literature analysis found that DNNs can successfully detect distinct levels of CWL despite the inter-subject and inter-session variability typically observed in EEG signals. Several methodologies were found using EEG signals in its native representation of a two-dimensional matrix as input to the classification algorithm, bypassing traditional feature selection steps. More often than not, researchers used DNNs as black-box type models, and only a few studies employed interpretable or explainable DNNs for CWL detection. However, these algorithms were mostly post hoc data analysis and classification schemes, and only a few studies adopted real-time CWL estimation methodologies. Further, it has been suggested that using interpretable deep learning methodologies may shed light on EEG correlates of CWL, but this remains mostly an unexplored area. This systematic review suggests using networks sensitive to temporal dependencies and appropriate input formulations for each type of DNN architecture to achieve robust classification performance. An additional suggestion is to utilize transfer learning methods to achieve high generalizability across tasks (task-independent classifiers), while simple cross-subject data pooling may achieve the same for subject-independent classifiers.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"6 4","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ad8530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article summarizes a systematic literature review of deep neural network-based cognitive workload (CWL) estimation from electroencephalographic (EEG) signals. The focus of this article can be delineated into two main elements: first is the identification of experimental paradigms prevalently employed for CWL induction, and second, is an inquiry about the data structure and input formulations commonly utilized in deep neural networks (DNN)-based CWL detection. The survey revealed several experimental paradigms that can reliably induce either graded levels of CWL or a desired cognitive state due to sustained induction of CWL. This article has characterized them with respect to the number of distinct CWL levels, cognitive states, experimental environment, and agents in focus. Further, this literature analysis found that DNNs can successfully detect distinct levels of CWL despite the inter-subject and inter-session variability typically observed in EEG signals. Several methodologies were found using EEG signals in its native representation of a two-dimensional matrix as input to the classification algorithm, bypassing traditional feature selection steps. More often than not, researchers used DNNs as black-box type models, and only a few studies employed interpretable or explainable DNNs for CWL detection. However, these algorithms were mostly post hoc data analysis and classification schemes, and only a few studies adopted real-time CWL estimation methodologies. Further, it has been suggested that using interpretable deep learning methodologies may shed light on EEG correlates of CWL, but this remains mostly an unexplored area. This systematic review suggests using networks sensitive to temporal dependencies and appropriate input formulations for each type of DNN architecture to achieve robust classification performance. An additional suggestion is to utilize transfer learning methods to achieve high generalizability across tasks (task-independent classifiers), while simple cross-subject data pooling may achieve the same for subject-independent classifiers.

基于脑电图的认知工作量检测的实验范例和深度神经网络的系统回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信