Neuroscience informatics最新文献

筛选
英文 中文
Motor Imagery Tasks Based Electroencephalogram Signals Classification Using Data-Driven Features 基于运动图像任务的数据驱动特征脑电信号分类
Neuroscience informatics Pub Date : 2023-06-01 DOI: 10.1016/j.neuri.2023.100128
Vikram Singh Kardam , Sachin Taran , Anukul Pandey
{"title":"Motor Imagery Tasks Based Electroencephalogram Signals Classification Using Data-Driven Features","authors":"Vikram Singh Kardam ,&nbsp;Sachin Taran ,&nbsp;Anukul Pandey","doi":"10.1016/j.neuri.2023.100128","DOIUrl":"10.1016/j.neuri.2023.100128","url":null,"abstract":"<div><p>Brain-Computer Interface (BCI) system consist of a variety of different applications based on the processing of electroencephalograph (EEG). One of the most significant categories are based on EEG signals segmentation for “Motor Imagery” (MI) classification.</p><p>When analytic methods use a fixed set of basis functions, the EEG signals frequently exhibit poor time-frequency localization. Additionally, these signals have a low signal-to-noise ratio (SNR) and highly non-stationary characteristics. As a result, BCI systems frequently have high error rates and low task detection accuracy.</p><p>This work is aiming to introduce the adaptive and data-driven based feature extraction method for MI-tasks classification. In this regard, empirical mode decomposition (EMD) and ensemble-EMD (EEMD) algorithms are explored. These data-driven decompositions decompose EEG signal into intrinsic mode functions (IMFs).</p><p>The IMFs are chosen to automatically reconstruct the EEG signal. The reconstructed EEG signal contains only information correlated to a specific motor imagery task and high SNR.</p><p>The time-domain features are extracted from both the algorithms and compared for the classification of right-hand and feet MI movements. The results have been compared to determine the suitability of each method. Different classifiers, including tree, naive bayes, support vector machine, k-nearest neighbors, ensemble average, and neural network (NN), have been tested for the proposed features in order to classify the features into right hand motor imagery and feet motor imagery tasks.</p><p>Our experimental results on the BNCI Horizon 2022 dataset show that the proposed method (EEMD) with three channels outperforms &gt; 15% with EMD based filtering with narrow NN based classification.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 2","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41931684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiomic features of contralateral and ipsilateral hemispheres for prediction of glioma genetic markers 对侧和同侧脑半球放射学特征预测胶质瘤遗传标记
Neuroscience informatics Pub Date : 2023-06-01 DOI: 10.1016/j.neuri.2023.100116
Nicholas C. Wang , Johann Gagnon-Bartsch , Ashok Srinivasan , Michelle M. Kim , Douglas C. Noll , Arvind Rao
{"title":"Radiomic features of contralateral and ipsilateral hemispheres for prediction of glioma genetic markers","authors":"Nicholas C. Wang ,&nbsp;Johann Gagnon-Bartsch ,&nbsp;Ashok Srinivasan ,&nbsp;Michelle M. Kim ,&nbsp;Douglas C. Noll ,&nbsp;Arvind Rao","doi":"10.1016/j.neuri.2023.100116","DOIUrl":"10.1016/j.neuri.2023.100116","url":null,"abstract":"<div><p>Purpose: Radiomic features of gliomas are often used to predict genetic markers from radiological studies. Radiomic features were extracted from the contralateral brain to test if tumor texture is driving the predictive power of machine learning models. Ideally, these contralateral models would be a negative control for tumor radiomics models, since many studies use contralateral normal appearing white matter for normalization. This study used those features to attempt to predict IDH mutation status, MGMT promoter methylation, TERT promoter mutation, and ATRX mutation status with random forests.</p><p>Methods: Radiomic features were extracted from the tumor region, a mirrored contralateral region, a spherical region within the tumor, a spherical region on the contralateral, and a spherical sample of the ipsilateral side. These features were used independently to predict IDH, MGMT, TERT, and ATRX using random forests.</p><p>Main Findings: Contralateral features alone were as predictive of IDH mutation status as tumor features and had predictive power for several genetic markers.</p><p>Conclusion: Normalization with contralateral brain should be done carefully, and further investigation of potential radiological changes to the contralateral is warranted.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 2","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46768740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eldo-care: EEG with Kinect sensor based telehealthcare for the disabled and the elderly Eldo-Care:基于Kinect传感器的脑电图,用于残疾人和老年人的远程医疗
Neuroscience informatics Pub Date : 2023-06-01 DOI: 10.1016/j.neuri.2023.100130
Sima Das , Arpan Adhikary , Asif Ali Laghari , Solanki Mitra
{"title":"Eldo-care: EEG with Kinect sensor based telehealthcare for the disabled and the elderly","authors":"Sima Das ,&nbsp;Arpan Adhikary ,&nbsp;Asif Ali Laghari ,&nbsp;Solanki Mitra","doi":"10.1016/j.neuri.2023.100130","DOIUrl":"10.1016/j.neuri.2023.100130","url":null,"abstract":"<div><p>Telehealthcare systems are nowadays becoming a massive daily helping kit for elderly and disabled people. By using the Kinect sensors, remote monitoring has become easy. Also, the sensors' data are useful for the further improvement of the device. In this paper, we have discussed our newly developed “Eldo-care” system. This system is designed for the assessment and management of diverse neurological illnesses. The telemedical system is developed to monitor the psycho-neurological condition. People with disabilities and the elderly frequently experience access issues to essential services. Researchers today are concentrating on rehabilitative technologies based on human-computer interfaces that are closer to social-emotional intelligence. The goal of the study is to help old and disabled persons with cognitive rehabilitation using machine learning techniques. Human brain activity is observed using electroencephalograms, while user movement is tracked using Kinect sensors. Chebyshev filter is used for feature extraction and noise reduction. Utilizing the autoencoder technique, categorization is carried out by a Convolutional neural network with an accuracy of 95% and higher based on transfer learning. A better quality of life for older and disabled persons will be attained through the application of the suggested system in real time. The proposed device is attached to the subject under monitoring.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 2","pages":"Article 100130"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46862655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multiclass semantic segmentation mediated neuropathological readout in Parkinson's disease 多类语义分割介导的帕金森病神经病理读出
Neuroscience informatics Pub Date : 2023-06-01 DOI: 10.1016/j.neuri.2023.100131
Hosein Barzekar , Hai Ngu , Han Hui Lin , Mohsen Hejrati , Steven Ray Valdespino , Sarah Chu , Baris Bingol , Somaye Hashemifar , Soumitra Ghosh
{"title":"Multiclass semantic segmentation mediated neuropathological readout in Parkinson's disease","authors":"Hosein Barzekar ,&nbsp;Hai Ngu ,&nbsp;Han Hui Lin ,&nbsp;Mohsen Hejrati ,&nbsp;Steven Ray Valdespino ,&nbsp;Sarah Chu ,&nbsp;Baris Bingol ,&nbsp;Somaye Hashemifar ,&nbsp;Soumitra Ghosh","doi":"10.1016/j.neuri.2023.100131","DOIUrl":"https://doi.org/10.1016/j.neuri.2023.100131","url":null,"abstract":"<div><p>Automated segmentation of anatomical sub-regions with high precision has become a necessity to enable the quantification and characterization of cells/ tissues in histology images. An automated model to do this task is currently unavailable. One area of the brain which requires precise sub-region segmentation and downstream analysis is Substantia Nigra (SN). The loss of dopaminergic (DA) neurons in SN is the primary endpoint for majority of Parkinson's disease (PD) preclinical studies. The scientists rely on manually segmenting anatomical sub-regions of the brain which is extremely time-consuming and prone to labeler-dependent bias. In this study, we employed a UNet-based architecture to segment two sub-regions of SN-dorsal tier of substantia nigra pars compacta (SNCD) and reticulata (SNr). We compared model performance with various combinations of encoders, image sizes and sample selection techniques. The model is trained on approximately one thousand annotated 2D brain images stained with Nissl/ Haematoxylin and Tyrosine Hydroxylase enzyme (TH, indicator of dopaminergic neuron viability). The framework's output are: segmentation of SNr and SNCD irrespective of the tissue staining, quantitative readout for TH intensity indicating DA health status in the segmented regions. With the availability of training data, this model can be expanded to other 2D sub-region segmentation tasks. The shorter turnaround time, high accuracy and unbiased data output of this model will fulfill the ever increasing demands of data analysis in PD preclinical research.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 2","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49700294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Gene set enrichment analysis indicates convergence in the mTOR signalling pathway between syndromic and non-syndromic autism 基因集富集分析表明,mTOR信号通路在综合征型和非综合征型自闭症之间具有趋同性
Neuroscience informatics Pub Date : 2023-06-01 DOI: 10.1016/j.neuri.2023.100119
Victor Gustavo Oliveira Evangelho , Murilo Lamim Bello , Helena Carla Castro , Marcia Rodrigues Amorim
{"title":"Gene set enrichment analysis indicates convergence in the mTOR signalling pathway between syndromic and non-syndromic autism","authors":"Victor Gustavo Oliveira Evangelho ,&nbsp;Murilo Lamim Bello ,&nbsp;Helena Carla Castro ,&nbsp;Marcia Rodrigues Amorim","doi":"10.1016/j.neuri.2023.100119","DOIUrl":"10.1016/j.neuri.2023.100119","url":null,"abstract":"<div><p>Autism is a developmental disorder that affects around 62.1 million people globally. Estimates of its prevalence have been on the rise. Recent research suggests that in the United States alone, the cost of caring for individuals with autism could reach $461 billion by 2025, including medical expenses. Autism results from a combination of genetic and environmental factors, and molecular diagnosis can often be challenging. Therefore, there is a need for more reliable biomarkers to assist in clinical evaluation. Here, we employed a bioinformatics technique, Gene Set Enrichment Analysis (GSEA), that allows for the evaluation of whether specific genes associated with autism are related to common biological pathways and particular molecular processes using data extracted from genetic biobanks. Thus, it was possible to validate 910 genes related to autism by means of GSEA. The generated data indicated genetic convergence in a molecular pathway, suggesting that the disordered activation of the RAS-MAPK and PI3K-AKT signaling cascades converges in the mTOR pathway. Cell typification in silico indicated high expression in striated neurons, type D1 (p=5,947e-04) and type D2 (p=1,292e-05). In conclusion, our molecular pathway data can be used to assess, using computer modeling, whether new drug candidates for treating autism interact with proteins involved in the mTOR pathway, thus optimizing the screening of new drugs. In addition, with the evidence of such biomarkers and the development of easily accessible laboratory tests, in the future, the early clinical diagnosis of autism could be significantly improved.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 2","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48647349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of breathing pathway and musical features on the processing of music induced emotions 呼吸途径和音乐特征对音乐诱发情绪加工的影响
Neuroscience informatics Pub Date : 2023-03-01 DOI: 10.1016/j.neuri.2023.100117
Mohammad Javad Mollakazemi, Dibyajyoti Biswal, Brooke Place, Abhijit Patwardhan
{"title":"Effects of breathing pathway and musical features on the processing of music induced emotions","authors":"Mohammad Javad Mollakazemi,&nbsp;Dibyajyoti Biswal,&nbsp;Brooke Place,&nbsp;Abhijit Patwardhan","doi":"10.1016/j.neuri.2023.100117","DOIUrl":"10.1016/j.neuri.2023.100117","url":null,"abstract":"<div><p>The effects of the breathing pathway (nasal vs. oral) on the processing of emotions are not yet well-understood although there is evidence of respiratory entrainment of local field potential activity in human limbic networks and the importance of nasal airflow in shaping this entrainment. In this study, we compared the degree of various emotions triggered by different pieces of music during oral breathing (OB) and nasal breathing (NB). In addition, correlation of different musical features with emotions was investigated. Our results showed that during NB, subjects found songs more relaxing (p = 0.00013) and happier (p = 0.069), and they felt more arousal states from songs (p = 0.036) when compared to the same songs during OB, while during OB subjects' average rating for more negative emotions was higher when compared to NB (NS). During both OB and NB, we observed that the consonance degree of songs had significantly high positive correlations with positive emotions (valence: p &lt; 0.01, happy: p &lt; 0.05, relaxed: NB: p &lt; 0.05, OB: NS) and significantly high negative correlations with negative emotions (angry: p &lt; 0.001, fear: p &lt; 0.05, frustrated: NB: p &lt; 0.001, OB: NS), while the higher complexity rate of songs had a positive correlation with negative emotions (fear: p &lt; 0.01, sad &lt; 0.05, frustrated: p &lt; 0.05, angry: OB: p &lt; 0.05, NB: NS) and negative correlations with positive emotions (happy: p &lt; 0.05, relaxed: p &lt; 0.05, valence: p &lt; 0.05).</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 1","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48598181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transvenous embolization of dural arteriovenous fistula of the cavernous sinus by identifying the orifice of the occluded inferior petrosal sinus through the angle of the microguidewire 通过微导丝角度识别闭塞的岩下窦口经静脉栓塞治疗海绵窦硬脑膜动静脉瘘
Neuroscience informatics Pub Date : 2023-03-01 DOI: 10.1016/j.neuri.2023.100120
Huachen Zhang, Shikai Liang, Xianli Lv
{"title":"Transvenous embolization of dural arteriovenous fistula of the cavernous sinus by identifying the orifice of the occluded inferior petrosal sinus through the angle of the microguidewire","authors":"Huachen Zhang,&nbsp;Shikai Liang,&nbsp;Xianli Lv","doi":"10.1016/j.neuri.2023.100120","DOIUrl":"10.1016/j.neuri.2023.100120","url":null,"abstract":"<div><h3>Objective</h3><p>To describe that the angle of the microguidwire on lateral projection under fluoroscopic image is a prediction of cannulation of the occluded inferior petrosal sinus in the transvenous embolization of cavernous sinus dural fistulas.</p></div><div><h3>Methods</h3><p>From January 2018 through January 2021, 12 cavernous sinus dural fistulas with ipsilateral inferior petrosal sinus occlusion identified in 12 consecutive patients were cured by cannulation of the occluded ipsilateral inferior petrosal sinus. Clinical, radiologic and procedure data of the 12 patients were retrospectively reviewed. The angle of microguidewire between on lateral projection under fluoroscopic image between the inferior petrosal sinus and the internal jugular vein was measured.</p></div><div><h3>Results</h3><p>In the 12 patients, access via the occluded ipsilateral inferior petrosal sinus was primarily attempted as the transvenous approach. During the procedure, the angle of microguidwire on lateral projection under fluoroscopic image between the inferior petrosal sinus and the internal jugular vein was 117°±7°, which is very useful to confirm the cannulation of the occluded inferior petrosal sinus. Complete occlusion was achieved in all fistulas, with no procedure-related morbidity or mortality. Postprocedural symptom was improved in all patients.</p></div><div><h3>Conclusion</h3><p>Cannulation of an occluded inferior petrosal sinus is possible and reasonable as an initial access attempt for cavernous sinus dural fistulas. The angle of microguidwire on the lateral projection under fluoroscopic image can help to confirm the orifice of the occluded inferior petrosal sinus.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 1","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47473602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and implementation of auto encoder based bio medical signal transmission to optimize power using convolution neural network 基于卷积神经网络的自动编码器生物医学信号传输功率优化的设计与实现
Neuroscience informatics Pub Date : 2023-03-01 DOI: 10.1016/j.neuri.2023.100121
K.N. Sunil Kumar , G.B. Arjun Kumar , Ravi Gatti , S. Santosh Kumar , Darshan A. Bhyratae , Satyasrikanth Palle
{"title":"Design and implementation of auto encoder based bio medical signal transmission to optimize power using convolution neural network","authors":"K.N. Sunil Kumar ,&nbsp;G.B. Arjun Kumar ,&nbsp;Ravi Gatti ,&nbsp;S. Santosh Kumar ,&nbsp;Darshan A. Bhyratae ,&nbsp;Satyasrikanth Palle","doi":"10.1016/j.neuri.2023.100121","DOIUrl":"10.1016/j.neuri.2023.100121","url":null,"abstract":"<div><p>Real-time biomedical signal transmission requires IoTs and cloud infrastructure. In this work, we investigate feasible lossy compression approaches that leverage the temporal and spatial dynamics of the signal along with current algorithms based on Compressive Sensing (CS) that use signal correlation in space and time. These techniques are altered so they may be applied efficiently to a distributed WSN. To achieve this, we proposed Convolution Neural Network (CNN) based Optimized Bio-Signals Compression using Auto-Encoder (BCAE), which integrates auto-encoder and feature selection. Instead of using the entire signal as an input, we encode the main part of the signal and send it to the desired location. Reconstruction decrypts without signal loss. Realistic aggregation and data collection procedures can improve data reconstruction accuracy. We compare various techniques' reconstruction error vs. energy requirements. The simulation results reveal that packet loss is 40% and data reconstruction error is 5%. Data forwarding time is lowered by 16.36%, while network energy usage is cut by 23.59%. The proposed method outperforms with existing techniques and the results are validated using MATLAB.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 1","pages":"Article 100121"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46361474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantitative EEG features and machine learning classifiers for eye-blink artifact detection: A comparative study 用于眨眼伪影检测的定量脑电特征和机器学习分类器的比较研究
Neuroscience informatics Pub Date : 2023-03-01 DOI: 10.1016/j.neuri.2022.100115
Maliha Rashida, Mohammad Ashfak Habib
{"title":"Quantitative EEG features and machine learning classifiers for eye-blink artifact detection: A comparative study","authors":"Maliha Rashida,&nbsp;Mohammad Ashfak Habib","doi":"10.1016/j.neuri.2022.100115","DOIUrl":"10.1016/j.neuri.2022.100115","url":null,"abstract":"<div><p>Ocular artifact, namely eye-blink artifact, is an inevitable and one of the most destructive noises of EEG signals. Many solutions of detecting the eye-blink artifact were proposed. Different subsets of EEG features and Machine Learning (ML) classifiers were used for this purpose. But no comprehensive comparison of these features and ML classifiers was presented. This paper presents the comparison of twelve EEG features and five ML classifiers, commonly used in existing studies for the detection of eye-blink artifacts. An EEG dataset, containing 2958 epochs of eye-blink, non-eye-blink, and eye-blink-like (non-eye-blink) EEG activities, is used in this study. The performance of each feature and classifier has been measured using accuracy, precision, recall, and f1-score. Experimental results reveal that scalp topography is the most potential among the selected features in detecting eye-blink artifacts. The best performing classifier is Artificial Neural Network (ANN) among the five classifiers. The combination of scalp topography and ANN classifier performed as the most powerful feature-classifier combination. However, it is expected that the findings of this study will help the future researchers to select appropriate features and classifiers in building eye-blink artifact detection models.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 1","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45786077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Predictive value of clot imaging in acute ischemic stroke: A systematic review of artificial intelligence and conventional studies 血栓成像对急性缺血性脑卒中的预测价值:人工智能和常规研究的系统综述
Neuroscience informatics Pub Date : 2023-03-01 DOI: 10.1016/j.neuri.2022.100114
Daniela Dumitriu LaGrange , Jeremy Hofmeister , Andrea Rosi , Maria Isabel Vargas , Isabel Wanke , Paolo Machi , Karl-Olof Lövblad
{"title":"Predictive value of clot imaging in acute ischemic stroke: A systematic review of artificial intelligence and conventional studies","authors":"Daniela Dumitriu LaGrange ,&nbsp;Jeremy Hofmeister ,&nbsp;Andrea Rosi ,&nbsp;Maria Isabel Vargas ,&nbsp;Isabel Wanke ,&nbsp;Paolo Machi ,&nbsp;Karl-Olof Lövblad","doi":"10.1016/j.neuri.2022.100114","DOIUrl":"10.1016/j.neuri.2022.100114","url":null,"abstract":"<div><p>The neuroimaging signs of the clot in acute ischemic stroke are relevant for clot biology and its response to treatment. The diagnostic and predictive value of clot imaging is confirmed by conventional studies and emerges as a topic of interest for artificial intelligence (AI) developments. We performed a systematic review to evaluate the state of the art of AI in clot imaging, how far AI is from becoming clinically beneficial, and what are the perspectives to consider for further developments. In parallel, the review is examining the evidence brought by conventional studies concerning the relevance of clot imaging, from 2019 to August 2022. The automatic detection and segmentation of the clot are the most important advances towards AI implementation in the clinic. Predictive radiomics models require further exploration and methods optimization. Future AI approaches could consider conventional clot imaging characteristics and patient specific vascular features as variables for model development.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 1","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48498180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信