Neuroscience-informed nomogram model for early prediction of cognitive impairment in Parkinson's disease

Sudharshan Putha , Swaroop Reddy Gayam , Bhavani Prasad Kasaraneni , Krishna Kanth Kondapaka , Sateesh Kumar Nallamala , Praveen Thuniki
{"title":"Neuroscience-informed nomogram model for early prediction of cognitive impairment in Parkinson's disease","authors":"Sudharshan Putha ,&nbsp;Swaroop Reddy Gayam ,&nbsp;Bhavani Prasad Kasaraneni ,&nbsp;Krishna Kanth Kondapaka ,&nbsp;Sateesh Kumar Nallamala ,&nbsp;Praveen Thuniki","doi":"10.1016/j.neuri.2025.100189","DOIUrl":null,"url":null,"abstract":"<div><div>Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD), significantly affecting patients' quality of life and posing challenges for clinical management. Early prediction of cognitive decline in PD is critical for timely diagnosis and intervention. However, the interplay of multivariate factors such as age, gender, and disease duration complicate early prediction. To address the multifactorial nature of cognitive impairment in PD, this study proposes a neuroscience-informed nomogram model constructed using multivariate logistic regression. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to identify highly correlated clinical variables influencing cognitive function. Subsequently, these variables were integrated into a visualized nomogram model to facilitate early prediction of cognitive impairment (CI) risk. Performance evaluation of the model demonstrated high accuracy, consistency, and clinical applicability, significantly enhancing diagnostic efficiency for neurologists. Furthermore, the model provides visual comparisons of patient distributions across different predictor values, enabling personalized risk assessments. According to experimental analysis and verification, the model demonstrated outstanding prediction with a region under the ROC curve of 0.872 on the original training set and 0.870 on the validation set. Because the anticipated and observed probabilities were so consistent, the model was able to forecast the patient's likelihood of cognitive impairment.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100189"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD), significantly affecting patients' quality of life and posing challenges for clinical management. Early prediction of cognitive decline in PD is critical for timely diagnosis and intervention. However, the interplay of multivariate factors such as age, gender, and disease duration complicate early prediction. To address the multifactorial nature of cognitive impairment in PD, this study proposes a neuroscience-informed nomogram model constructed using multivariate logistic regression. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to identify highly correlated clinical variables influencing cognitive function. Subsequently, these variables were integrated into a visualized nomogram model to facilitate early prediction of cognitive impairment (CI) risk. Performance evaluation of the model demonstrated high accuracy, consistency, and clinical applicability, significantly enhancing diagnostic efficiency for neurologists. Furthermore, the model provides visual comparisons of patient distributions across different predictor values, enabling personalized risk assessments. According to experimental analysis and verification, the model demonstrated outstanding prediction with a region under the ROC curve of 0.872 on the original training set and 0.870 on the validation set. Because the anticipated and observed probabilities were so consistent, the model was able to forecast the patient's likelihood of cognitive impairment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信