Bayesian Inference General Procedures for A Single-subject Test study

Jie Li , Gary Green , Sarah J.A. Carr , Peng Liu , Jian Zhang
{"title":"Bayesian Inference General Procedures for A Single-subject Test study","authors":"Jie Li ,&nbsp;Gary Green ,&nbsp;Sarah J.A. Carr ,&nbsp;Peng Liu ,&nbsp;Jian Zhang","doi":"10.1016/j.neuri.2025.100195","DOIUrl":null,"url":null,"abstract":"<div><div>Abnormality detection in identifying a single-subject which deviates from the majority of a control group dataset is a fundamental problem. Typically, the control group is characterised using standard Normal statistics, and the detection of a single abnormal subject is in that context. However, in many situations, the control group cannot be described by Normal statistics, making standard statistical methods inappropriate. This paper presents a Bayesian Inference General Procedures for A Single-subject Test (BIGPAST) designed to mitigate the effects of skewness under the assumption that the dataset of the control group comes from the skewed Student <em>t</em> distribution. BIGPAST operates under the null hypothesis that the single-subject follows the same distribution as the control group. We assess BIGPAST's performance against other methods through simulation studies. The results demonstrate that BIGPAST is robust against deviations from normality and outperforms the existing approaches in accuracy, nearest to the nominal accuracy 0.95. BIGPAST can reduce model misspecification errors under the skewed Student <em>t</em> assumption by up to 12 times, as demonstrated in Section <span><span>3.3</span></span>. We apply BIGPAST to a Magnetoencephalography (MEG) dataset consisting of an individual with mild traumatic brain injury and an age and gender-matched control group. For example, the previous method failed to detect abnormalities in 8 brain areas, whereas BIGPAST successfully identified them, demonstrating its effectiveness in detecting abnormalities in a single-subject.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100195"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862500010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormality detection in identifying a single-subject which deviates from the majority of a control group dataset is a fundamental problem. Typically, the control group is characterised using standard Normal statistics, and the detection of a single abnormal subject is in that context. However, in many situations, the control group cannot be described by Normal statistics, making standard statistical methods inappropriate. This paper presents a Bayesian Inference General Procedures for A Single-subject Test (BIGPAST) designed to mitigate the effects of skewness under the assumption that the dataset of the control group comes from the skewed Student t distribution. BIGPAST operates under the null hypothesis that the single-subject follows the same distribution as the control group. We assess BIGPAST's performance against other methods through simulation studies. The results demonstrate that BIGPAST is robust against deviations from normality and outperforms the existing approaches in accuracy, nearest to the nominal accuracy 0.95. BIGPAST can reduce model misspecification errors under the skewed Student t assumption by up to 12 times, as demonstrated in Section 3.3. We apply BIGPAST to a Magnetoencephalography (MEG) dataset consisting of an individual with mild traumatic brain injury and an age and gender-matched control group. For example, the previous method failed to detect abnormalities in 8 brain areas, whereas BIGPAST successfully identified them, demonstrating its effectiveness in detecting abnormalities in a single-subject.
单受试者检验研究的贝叶斯推断一般程序
识别偏离对照组数据集大部分的单个受试者的异常检测是一个基本问题。通常,使用标准的正常统计来描述对照组的特征,并且在此背景下检测单个异常受试者。然而,在许多情况下,对照组不能用正常统计来描述,使得标准统计方法不合适。本文提出了一个单受试者测试的贝叶斯推断通用程序(BIGPAST),旨在减轻偏性的影响,假设对照组的数据集来自偏斜的Student t分布。BIGPAST在单一受试者遵循与对照组相同分布的零假设下运行。我们通过模拟研究来评估BIGPAST与其他方法的性能。结果表明,BIGPAST对偏离正态性具有鲁棒性,并且在精度上优于现有方法,最接近名义精度0.95。如3.3节所示,在倾斜的Student t假设下,BIGPAST可以将模型误规范误差减少12倍。我们将BIGPAST应用于脑磁图(MEG)数据集,该数据集由轻度创伤性脑损伤个体和年龄和性别匹配的对照组组成。例如,之前的方法未能检测到8个大脑区域的异常,而BIGPAST成功地识别了它们,证明了它在检测单个受试者异常方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信