Arhath Kumar , S. Pradeep , Kumud Arora , G. Sreeram , A. Pankajam , Trupti Patil , Aradhana Sahu
{"title":"基于特征融合的深度学习阿尔茨海默病神经障碍分类模型","authors":"Arhath Kumar , S. Pradeep , Kumud Arora , G. Sreeram , A. Pankajam , Trupti Patil , Aradhana Sahu","doi":"10.1016/j.neuri.2025.100196","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) is a severe brain disorder that can cause degradation of brain tissue and memory loss. Owing to Alzheimer's disease's high cost, a number of deep learning-based models have been put out to accurately identify the illness. This study introduces a new way to classify Alzheimer's disease using deep learning and combining different types of features. The 3D lightweight MBANet developed in this research has less parameters and can concentrate on more discriminative deep structures than conventional artificial neural networks like CNN, according to experimental data. We first create a Multi-Branch Attention Network (MBANet) to gather detailed features of the hippocampus from large sets of data. A new method is created to capture texture features in the hippocampus. It uses two techniques: multi-Tree Wavelet Transform (MTWT) and Gray Length Matrix (GLM). This method works in three dimensions and at different scales. Also, standard methods are used to measure the size and shape of the hippocampus. A mixed feature fusion network is created to simplify and combine data from the hippocampus, helping to classify Alzheimer's disease more effectively. Tests on the EADC-ADNI dataset show that the proposed method for classifying Alzheimer's disease achieves an accuracy of 93.39%, a <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-score of 93.10%, and an AUC of 93.21%. The test results show that the proposed method for classifying Alzheimer's disease is effective and better than traditional methods.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100196"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature fusion based deep learning model for Alzheimer's neurological disorder classification\",\"authors\":\"Arhath Kumar , S. Pradeep , Kumud Arora , G. Sreeram , A. Pankajam , Trupti Patil , Aradhana Sahu\",\"doi\":\"10.1016/j.neuri.2025.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alzheimer's disease (AD) is a severe brain disorder that can cause degradation of brain tissue and memory loss. Owing to Alzheimer's disease's high cost, a number of deep learning-based models have been put out to accurately identify the illness. This study introduces a new way to classify Alzheimer's disease using deep learning and combining different types of features. The 3D lightweight MBANet developed in this research has less parameters and can concentrate on more discriminative deep structures than conventional artificial neural networks like CNN, according to experimental data. We first create a Multi-Branch Attention Network (MBANet) to gather detailed features of the hippocampus from large sets of data. A new method is created to capture texture features in the hippocampus. It uses two techniques: multi-Tree Wavelet Transform (MTWT) and Gray Length Matrix (GLM). This method works in three dimensions and at different scales. Also, standard methods are used to measure the size and shape of the hippocampus. A mixed feature fusion network is created to simplify and combine data from the hippocampus, helping to classify Alzheimer's disease more effectively. Tests on the EADC-ADNI dataset show that the proposed method for classifying Alzheimer's disease achieves an accuracy of 93.39%, a <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-score of 93.10%, and an AUC of 93.21%. The test results show that the proposed method for classifying Alzheimer's disease is effective and better than traditional methods.</div></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"5 2\",\"pages\":\"Article 100196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528625000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature fusion based deep learning model for Alzheimer's neurological disorder classification
Alzheimer's disease (AD) is a severe brain disorder that can cause degradation of brain tissue and memory loss. Owing to Alzheimer's disease's high cost, a number of deep learning-based models have been put out to accurately identify the illness. This study introduces a new way to classify Alzheimer's disease using deep learning and combining different types of features. The 3D lightweight MBANet developed in this research has less parameters and can concentrate on more discriminative deep structures than conventional artificial neural networks like CNN, according to experimental data. We first create a Multi-Branch Attention Network (MBANet) to gather detailed features of the hippocampus from large sets of data. A new method is created to capture texture features in the hippocampus. It uses two techniques: multi-Tree Wavelet Transform (MTWT) and Gray Length Matrix (GLM). This method works in three dimensions and at different scales. Also, standard methods are used to measure the size and shape of the hippocampus. A mixed feature fusion network is created to simplify and combine data from the hippocampus, helping to classify Alzheimer's disease more effectively. Tests on the EADC-ADNI dataset show that the proposed method for classifying Alzheimer's disease achieves an accuracy of 93.39%, a -score of 93.10%, and an AUC of 93.21%. The test results show that the proposed method for classifying Alzheimer's disease is effective and better than traditional methods.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology