Enhanced detection of headache presentation in unruptured brain arteriovenous malformation through combined radiologic features: A cross-sectional study

Chia-Yu Liu , Chia-Feng Lu , Jr-Wei Wu , Yong-Sin Hu , Jih-Yuan Lin , Huai-Che Yang , Jing-Kai Loo , Feng-Chi Chang , Kang-Du Liu , Chung-Jung Lin
{"title":"Enhanced detection of headache presentation in unruptured brain arteriovenous malformation through combined radiologic features: A cross-sectional study","authors":"Chia-Yu Liu ,&nbsp;Chia-Feng Lu ,&nbsp;Jr-Wei Wu ,&nbsp;Yong-Sin Hu ,&nbsp;Jih-Yuan Lin ,&nbsp;Huai-Che Yang ,&nbsp;Jing-Kai Loo ,&nbsp;Feng-Chi Chang ,&nbsp;Kang-Du Liu ,&nbsp;Chung-Jung Lin","doi":"10.1016/j.neuri.2025.100200","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Although determining angioarchitecture provide qualitative insights into headache-susceptible brain arteriovenous malformation (BAVM), the potential of quantitative radiomics to detect headache in unruptured BAVM remains unclear. We developed classification models that integrate radiomic features and angioarchitecture to assist unruptured BAVM headache treatment decision-making.</div></div><div><h3>Methods</h3><div>We considered patients with unruptured BAVM who underwent magnetic resonance imaging between 2010 and 2023. 146 radiomic features were assessed. Radiomic features were delineated, and angioarchitecture was analyzed. Statistical analyses, including least absolute shrinkage and selection operator regression and logistic regression, were used to select features and develop models. Receiver operating characteristic and decision curve analyses were performed to evaluate performance.</div></div><div><h3>Results</h3><div>The clinical model based on age, sex, and parieto-occipital lesion location achieved an area under the curve (AUC) of 0.741. Adding two significant radiomic features and one angioarchitecture feature enhanced the models. The radiomic and angioarchitecture models achieved an AUC of 0.763. The combined model, with an AUC of 0.799, significantly outperformed the clinical model (<span><math><mi>P</mi><mo>=</mo><mn>0.046</mn></math></span>). Decision curve analysis indicated that the combined model performed best at threshold probabilities between 15% and 40%.</div></div><div><h3>Conclusion</h3><div>Integrating radiomic features and angioarchitecture enhances the identification of unruptured BAVM headache.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100200"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Although determining angioarchitecture provide qualitative insights into headache-susceptible brain arteriovenous malformation (BAVM), the potential of quantitative radiomics to detect headache in unruptured BAVM remains unclear. We developed classification models that integrate radiomic features and angioarchitecture to assist unruptured BAVM headache treatment decision-making.

Methods

We considered patients with unruptured BAVM who underwent magnetic resonance imaging between 2010 and 2023. 146 radiomic features were assessed. Radiomic features were delineated, and angioarchitecture was analyzed. Statistical analyses, including least absolute shrinkage and selection operator regression and logistic regression, were used to select features and develop models. Receiver operating characteristic and decision curve analyses were performed to evaluate performance.

Results

The clinical model based on age, sex, and parieto-occipital lesion location achieved an area under the curve (AUC) of 0.741. Adding two significant radiomic features and one angioarchitecture feature enhanced the models. The radiomic and angioarchitecture models achieved an AUC of 0.763. The combined model, with an AUC of 0.799, significantly outperformed the clinical model (P=0.046). Decision curve analysis indicated that the combined model performed best at threshold probabilities between 15% and 40%.

Conclusion

Integrating radiomic features and angioarchitecture enhances the identification of unruptured BAVM headache.
通过综合放射学特征增强未破裂脑动静脉畸形头痛表现的检测:一项横断面研究
背景:虽然血管结构的确定为头痛易感脑动静脉畸形(BAVM)提供了定性的见解,但定量放射组学在未破裂的BAVM中检测头痛的潜力仍不清楚。我们开发了结合放射学特征和血管结构的分类模型,以辅助未破裂的BAVM头痛治疗决策。方法选取2010年至2023年间接受磁共振成像的未破裂脑脊髓瘤患者。评估146个放射学特征。放射学特征勾画,血管结构分析。统计分析,包括最小绝对收缩和选择算子回归和逻辑回归,用于选择特征和开发模型。采用受试者工作特征和决策曲线分析来评价受试者的表现。结果基于年龄、性别、枕顶病变部位的临床模型曲线下面积(AUC)为0.741。添加两个重要的放射学特征和一个血管建筑学特征增强了模型。放射学和血管建筑学模型的AUC为0.763。联合模型的AUC为0.799,显著优于临床模型(P=0.046)。决策曲线分析表明,组合模型在阈值概率在15%到40%之间时表现最佳。结论放射学特征与血管造影相结合可提高对未破裂性脑脊髓型头痛的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信