Enhanced detection of headache presentation in unruptured brain arteriovenous malformation through combined radiologic features: A cross-sectional study

Chia-Yu Liu , Chia-Feng Lu , Jr-Wei Wu , Yong-Sin Hu , Jih-Yuan Lin , Huai-Che Yang , Jing-Kai Loo , Feng-Chi Chang , Kang-Du Liu , Chung-Jung Lin
{"title":"Enhanced detection of headache presentation in unruptured brain arteriovenous malformation through combined radiologic features: A cross-sectional study","authors":"Chia-Yu Liu ,&nbsp;Chia-Feng Lu ,&nbsp;Jr-Wei Wu ,&nbsp;Yong-Sin Hu ,&nbsp;Jih-Yuan Lin ,&nbsp;Huai-Che Yang ,&nbsp;Jing-Kai Loo ,&nbsp;Feng-Chi Chang ,&nbsp;Kang-Du Liu ,&nbsp;Chung-Jung Lin","doi":"10.1016/j.neuri.2025.100200","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Although determining angioarchitecture provide qualitative insights into headache-susceptible brain arteriovenous malformation (BAVM), the potential of quantitative radiomics to detect headache in unruptured BAVM remains unclear. We developed classification models that integrate radiomic features and angioarchitecture to assist unruptured BAVM headache treatment decision-making.</div></div><div><h3>Methods</h3><div>We considered patients with unruptured BAVM who underwent magnetic resonance imaging between 2010 and 2023. 146 radiomic features were assessed. Radiomic features were delineated, and angioarchitecture was analyzed. Statistical analyses, including least absolute shrinkage and selection operator regression and logistic regression, were used to select features and develop models. Receiver operating characteristic and decision curve analyses were performed to evaluate performance.</div></div><div><h3>Results</h3><div>The clinical model based on age, sex, and parieto-occipital lesion location achieved an area under the curve (AUC) of 0.741. Adding two significant radiomic features and one angioarchitecture feature enhanced the models. The radiomic and angioarchitecture models achieved an AUC of 0.763. The combined model, with an AUC of 0.799, significantly outperformed the clinical model (<span><math><mi>P</mi><mo>=</mo><mn>0.046</mn></math></span>). Decision curve analysis indicated that the combined model performed best at threshold probabilities between 15% and 40%.</div></div><div><h3>Conclusion</h3><div>Integrating radiomic features and angioarchitecture enhances the identification of unruptured BAVM headache.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100200"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Although determining angioarchitecture provide qualitative insights into headache-susceptible brain arteriovenous malformation (BAVM), the potential of quantitative radiomics to detect headache in unruptured BAVM remains unclear. We developed classification models that integrate radiomic features and angioarchitecture to assist unruptured BAVM headache treatment decision-making.

Methods

We considered patients with unruptured BAVM who underwent magnetic resonance imaging between 2010 and 2023. 146 radiomic features were assessed. Radiomic features were delineated, and angioarchitecture was analyzed. Statistical analyses, including least absolute shrinkage and selection operator regression and logistic regression, were used to select features and develop models. Receiver operating characteristic and decision curve analyses were performed to evaluate performance.

Results

The clinical model based on age, sex, and parieto-occipital lesion location achieved an area under the curve (AUC) of 0.741. Adding two significant radiomic features and one angioarchitecture feature enhanced the models. The radiomic and angioarchitecture models achieved an AUC of 0.763. The combined model, with an AUC of 0.799, significantly outperformed the clinical model (P=0.046). Decision curve analysis indicated that the combined model performed best at threshold probabilities between 15% and 40%.

Conclusion

Integrating radiomic features and angioarchitecture enhances the identification of unruptured BAVM headache.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信