Automated classification of epileptic seizures using modified one-dimensional convolution neural network based on empirical mode decomposition with high accuracy

Ibtihal Hassan Elshekhidris , Magdi B. M. Amien , Ahmed Fragoon
{"title":"Automated classification of epileptic seizures using modified one-dimensional convolution neural network based on empirical mode decomposition with high accuracy","authors":"Ibtihal Hassan Elshekhidris ,&nbsp;Magdi B. M. Amien ,&nbsp;Ahmed Fragoon","doi":"10.1016/j.neuri.2025.100188","DOIUrl":null,"url":null,"abstract":"<div><div>Background and objectives: The method of electroencephalography (EEG) is frequently employed to identify epileptic seizures. Visually inspecting nonlinear EEG waves is a very difficult and time-consuming process. Therefore, to help with patients' long-term assessment and treatment, an effective automatic detection system is required. Traditional methods of machine learning require step of feature extraction by manual which leads to time consuming, for it we modified in one-Dimensional convolution neural network architecture for features extraction and features dimension reduction for makes the classification low computational complexity and more accurate.</div><div>Methods: In this study, we did a comparison between three methods for classification: support vector machine, artificial neural network and one-dimensional convolution neural network. We used the stationary wavelet transform with mother function symlet2 for denoising EEG signal and used the empirical mode decomposition for signal decomposition. After that, features extraction step is necessary when used the support vector machine and artificial neural network, but when use the convolution neural network the features are extracted by layers.</div><div>Results: The highest value of a classification accuracy was 100%, and a sensitivity 100%, a specificity 100%, and a precision 100%, which appeared five times when using the one-dimensional convolution neural network after empirical mode decomposition method.</div><div>Conclusions: The efficiency of the three methods has been compared and evaluated by using four metrics: Accuracy, Sensitivity, specificity, and Precision, and the result showed the one-dimensional convolution neural network is the best method for classification with empirical mode decomposition.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: The method of electroencephalography (EEG) is frequently employed to identify epileptic seizures. Visually inspecting nonlinear EEG waves is a very difficult and time-consuming process. Therefore, to help with patients' long-term assessment and treatment, an effective automatic detection system is required. Traditional methods of machine learning require step of feature extraction by manual which leads to time consuming, for it we modified in one-Dimensional convolution neural network architecture for features extraction and features dimension reduction for makes the classification low computational complexity and more accurate.
Methods: In this study, we did a comparison between three methods for classification: support vector machine, artificial neural network and one-dimensional convolution neural network. We used the stationary wavelet transform with mother function symlet2 for denoising EEG signal and used the empirical mode decomposition for signal decomposition. After that, features extraction step is necessary when used the support vector machine and artificial neural network, but when use the convolution neural network the features are extracted by layers.
Results: The highest value of a classification accuracy was 100%, and a sensitivity 100%, a specificity 100%, and a precision 100%, which appeared five times when using the one-dimensional convolution neural network after empirical mode decomposition method.
Conclusions: The efficiency of the three methods has been compared and evaluated by using four metrics: Accuracy, Sensitivity, specificity, and Precision, and the result showed the one-dimensional convolution neural network is the best method for classification with empirical mode decomposition.
基于经验模态分解的改进一维卷积神经网络在癫痫发作自动分类中的应用
背景和目的:脑电图(EEG)的方法经常被用来识别癫痫发作。视觉检测非线性脑电波是一个非常困难和耗时的过程。因此,为了帮助患者的长期评估和治疗,需要一个有效的自动检测系统。传统的机器学习方法需要手动进行特征提取,耗时长,在一维卷积神经网络架构上进行特征提取和特征降维,使得分类计算复杂度低,准确率高。方法:对支持向量机、人工神经网络和一维卷积神经网络三种分类方法进行比较。采用带母函数symlet2的平稳小波变换对脑电信号进行降噪,并采用经验模态分解对信号进行分解。在此之后,使用支持向量机和人工神经网络时需要进行特征提取步骤,而使用卷积神经网络时则是逐层提取特征。结果:使用经验模态分解方法后的一维卷积神经网络,分类准确率最高为100%,灵敏度最高为100%,特异性最高为100%,精度最高为100%,出现了5次。结论:通过准确度、灵敏度、特异性和精密度4个指标对3种分类方法的效率进行了比较和评价,结果表明一维卷积神经网络是经验模态分解分类的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信