Non-invasive brain stimulation-based sleep stage classification using transcranial infrared based electrocardiogram

Janjhyam Venkata Naga Ramesh , Aadam Quraishi , Yassine Aoudni , Mustafa Mudhafar , Divya Nimma , Monika Bansal
{"title":"Non-invasive brain stimulation-based sleep stage classification using transcranial infrared based electrocardiogram","authors":"Janjhyam Venkata Naga Ramesh ,&nbsp;Aadam Quraishi ,&nbsp;Yassine Aoudni ,&nbsp;Mustafa Mudhafar ,&nbsp;Divya Nimma ,&nbsp;Monika Bansal","doi":"10.1016/j.neuri.2025.100197","DOIUrl":null,"url":null,"abstract":"<div><div>Non-invasive brain stimulation (NIBS) techniques, such as transcranial infrared (tNIR) stimulation, offer promising advancements in sleep monitoring and regulation. To enhance sleep stage classification without relying on traditional polysomnography (PSG) systems, we propose a novel approach integrating single-channel electrocardiogram (ECG) signals, heart rate variability (HRV) features, and tNIR stimulation. The maximal overlap discrete wavelet transform (MODWT) is applied for multi-resolution analysis of ECG signals, followed by peak information extraction. Based on the first-order deviation of peak positions, multi-dimensional HRV features are extracted. To identify HRV features strongly associated with different sleep stages, we introduce a feature selection method combining the ReliefF algorithm and Gini index. The selected features are then processed using the INFO-ABC Logit Boost method to establish correlations between HRV dynamics and sleep stages. Experimental results on publicly available datasets demonstrate that the proposed model achieves an overall accuracy of 83.67%, a precision of 82.59%, a Kappa coefficient of 77.94%, and an F1-score of 82.97%. Compared with conventional sleep staging methods, our approach enhances sleep quality assessment and facilitates real-time, non-invasive monitoring in home and mobile healthcare settings, leveraging the potential of tNIR-based NIBS for sleep modulation.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100197"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive brain stimulation (NIBS) techniques, such as transcranial infrared (tNIR) stimulation, offer promising advancements in sleep monitoring and regulation. To enhance sleep stage classification without relying on traditional polysomnography (PSG) systems, we propose a novel approach integrating single-channel electrocardiogram (ECG) signals, heart rate variability (HRV) features, and tNIR stimulation. The maximal overlap discrete wavelet transform (MODWT) is applied for multi-resolution analysis of ECG signals, followed by peak information extraction. Based on the first-order deviation of peak positions, multi-dimensional HRV features are extracted. To identify HRV features strongly associated with different sleep stages, we introduce a feature selection method combining the ReliefF algorithm and Gini index. The selected features are then processed using the INFO-ABC Logit Boost method to establish correlations between HRV dynamics and sleep stages. Experimental results on publicly available datasets demonstrate that the proposed model achieves an overall accuracy of 83.67%, a precision of 82.59%, a Kappa coefficient of 77.94%, and an F1-score of 82.97%. Compared with conventional sleep staging methods, our approach enhances sleep quality assessment and facilitates real-time, non-invasive monitoring in home and mobile healthcare settings, leveraging the potential of tNIR-based NIBS for sleep modulation.
基于无创脑刺激的经颅红外心电图睡眠阶段分类
非侵入性脑刺激(NIBS)技术,如经颅红外(tNIR)刺激,在睡眠监测和调节方面提供了有希望的进步。为了在不依赖传统多导睡眠图(PSG)系统的情况下增强睡眠阶段分类,我们提出了一种整合单通道心电图(ECG)信号、心率变异性(HRV)特征和tNIR刺激的新方法。采用最大重叠离散小波变换(MODWT)对心电信号进行多分辨率分析,提取峰值信息。基于峰值位置的一阶偏差,提取了多维HRV特征。为了识别与不同睡眠阶段密切相关的HRV特征,我们引入了一种结合ReliefF算法和基尼指数的特征选择方法。然后使用INFO-ABC Logit Boost方法对选定的特征进行处理,以建立HRV动态与睡眠阶段之间的相关性。在公开数据集上的实验结果表明,该模型的总体准确率为83.67%,精密度为82.59%,Kappa系数为77.94%,f1分数为82.97%。与传统的睡眠分期方法相比,我们的方法增强了睡眠质量评估,促进了家庭和移动医疗环境中的实时、无创监测,充分利用了基于tnir的NIBS在睡眠调节方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信