Non-invasive brain stimulation-based sleep stage classification using transcranial infrared based electrocardiogram

Janjhyam Venkata Naga Ramesh , Aadam Quraishi , Yassine Aoudni , Mustafa Mudhafar , Divya Nimma , Monika Bansal
{"title":"Non-invasive brain stimulation-based sleep stage classification using transcranial infrared based electrocardiogram","authors":"Janjhyam Venkata Naga Ramesh ,&nbsp;Aadam Quraishi ,&nbsp;Yassine Aoudni ,&nbsp;Mustafa Mudhafar ,&nbsp;Divya Nimma ,&nbsp;Monika Bansal","doi":"10.1016/j.neuri.2025.100197","DOIUrl":null,"url":null,"abstract":"<div><div>Non-invasive brain stimulation (NIBS) techniques, such as transcranial infrared (tNIR) stimulation, offer promising advancements in sleep monitoring and regulation. To enhance sleep stage classification without relying on traditional polysomnography (PSG) systems, we propose a novel approach integrating single-channel electrocardiogram (ECG) signals, heart rate variability (HRV) features, and tNIR stimulation. The maximal overlap discrete wavelet transform (MODWT) is applied for multi-resolution analysis of ECG signals, followed by peak information extraction. Based on the first-order deviation of peak positions, multi-dimensional HRV features are extracted. To identify HRV features strongly associated with different sleep stages, we introduce a feature selection method combining the ReliefF algorithm and Gini index. The selected features are then processed using the INFO-ABC Logit Boost method to establish correlations between HRV dynamics and sleep stages. Experimental results on publicly available datasets demonstrate that the proposed model achieves an overall accuracy of 83.67%, a precision of 82.59%, a Kappa coefficient of 77.94%, and an F1-score of 82.97%. Compared with conventional sleep staging methods, our approach enhances sleep quality assessment and facilitates real-time, non-invasive monitoring in home and mobile healthcare settings, leveraging the potential of tNIR-based NIBS for sleep modulation.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100197"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive brain stimulation (NIBS) techniques, such as transcranial infrared (tNIR) stimulation, offer promising advancements in sleep monitoring and regulation. To enhance sleep stage classification without relying on traditional polysomnography (PSG) systems, we propose a novel approach integrating single-channel electrocardiogram (ECG) signals, heart rate variability (HRV) features, and tNIR stimulation. The maximal overlap discrete wavelet transform (MODWT) is applied for multi-resolution analysis of ECG signals, followed by peak information extraction. Based on the first-order deviation of peak positions, multi-dimensional HRV features are extracted. To identify HRV features strongly associated with different sleep stages, we introduce a feature selection method combining the ReliefF algorithm and Gini index. The selected features are then processed using the INFO-ABC Logit Boost method to establish correlations between HRV dynamics and sleep stages. Experimental results on publicly available datasets demonstrate that the proposed model achieves an overall accuracy of 83.67%, a precision of 82.59%, a Kappa coefficient of 77.94%, and an F1-score of 82.97%. Compared with conventional sleep staging methods, our approach enhances sleep quality assessment and facilitates real-time, non-invasive monitoring in home and mobile healthcare settings, leveraging the potential of tNIR-based NIBS for sleep modulation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信