Nature waterPub Date : 2024-11-01DOI: 10.1038/s44221-024-00334-2
Αmy Ockenden, Denise M. Mitrano, Melanie Kah, Louis A. Tremblay, Kevin S. Simon
{"title":"Impacts of warming and nutrient enrichment on the fate and effects of nanoplastics in a freshwater food web","authors":"Αmy Ockenden, Denise M. Mitrano, Melanie Kah, Louis A. Tremblay, Kevin S. Simon","doi":"10.1038/s44221-024-00334-2","DOIUrl":"10.1038/s44221-024-00334-2","url":null,"abstract":"Freshwater ecosystems face numerous pressures including climate-induced warming, eutrophication and contaminants such as nanoplastics (NPs), which have emerged as a major environmental concern. Despite evidence of harmful effects on freshwater biota, critical knowledge gaps persist regarding the fate and impacts of NP fate and impacts in natural aquatic systems. Here we conducted a 28-day mesocosm experiment in freshwater pond communities, investigating polystyrene NP fate and effects under ambient, warmed and nutrient-enriched conditions. Using palladium-doped polystyrene NPs for precise tracking, we observed NP presence in all ecological compartments, mainly accumulating in biofilms (~97%). NP accumulation was influenced by both nutrient enrichment and warming, with warming significantly increasing NP concentration in fish guts. NPs decreased macroinvertebrate abundance, attributed to the decline in benthic caddisfly larvae, which graze on the NP-rich biofilm. This research represents a important advancement in our understanding of plastic pollution impacts, revealing the complex interplay between NP pollution and global environmental change factors in freshwater ecosystems. Global warming and pollution both have a detrimental effect on the environment but little is known about their combined effects. A study based on metal-doped nanoplastics shows how temperature rise impacts the fate of nanoplastics, for example, by increasing accumulation in fish guts.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 12","pages":"1207-1217"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-11-01DOI: 10.1038/s44221-024-00329-z
Hu Zhao, Ziying Sun, Chenchen Li, Dan Wu, Li Quan Lee, Dan Lu, Yunbo Lv, Xiang Chu, Ying Li, Wenguang Tu, Ovi Lian Ding, Jin Zhou, Zhigang Zou, Yan Zhou, Hong Li
{"title":"Solar-driven sewage sludge electroreforming coupled with biological funnelling to cogenerate green food and hydrogen","authors":"Hu Zhao, Ziying Sun, Chenchen Li, Dan Wu, Li Quan Lee, Dan Lu, Yunbo Lv, Xiang Chu, Ying Li, Wenguang Tu, Ovi Lian Ding, Jin Zhou, Zhigang Zou, Yan Zhou, Hong Li","doi":"10.1038/s44221-024-00329-z","DOIUrl":"10.1038/s44221-024-00329-z","url":null,"abstract":"The ever-increasing generation of sewage sludge in megacities places a substantial burden on waste treatment systems. The complex and resilient structure of sludge renders conventional pretreatment and biological reclamation methods time-consuming, energy-inefficient and environmentally burdensome. Here we present an integrated mechano-electro-bioprocess that valorizes sludge with minimal environmental impact. We achieve nearly complete recovery of organics with ~91.4% total organic carbon (TOC), which are effectively converted into single-cell protein (>63% TOC) in a tandem process. Heavy metals are efficiently concentrated and stabilized, while simultaneously producing green hydrogen at an impressive efficiency and rate (~10% solar-to-hydrogen energy efficiency, rate >13 l per hour). A comprehensive life-cycle and techno-economic analysis confirms the substantial environmental and economic benefits of this approach. Notably, it results in a 99.5% reduction in CO2 emissions and a 99.3% decrease in energy depletion compared with conventional anaerobic digestion. As renewable electricity deployment expands globally, this mechano-electro-bioprocess offers a promising path towards sustainable development. The integrated process of mechanochemical fractionation-assisted and solar-driven electrochemical reforming, followed by biological funnelling, enables the efficient upcycling of sewage sludge. This process not only co-produces valuable single-cell protein and green hydrogen but also effectively removes heavy metal contaminants.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1102-1115"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-11-01DOI: 10.1038/s44221-024-00331-5
Mengmeng Du, Bocheng Qiu
{"title":"Food production from sludge","authors":"Mengmeng Du, Bocheng Qiu","doi":"10.1038/s44221-024-00331-5","DOIUrl":"10.1038/s44221-024-00331-5","url":null,"abstract":"Upcycling waste sewage sludge to food presents a promising approach to simultaneously addressing environmental concerns and achieving a circular economy. A hybrid system that integrates mechanochemical, electrochemical, and biological catalysis demonstrates the potential for single-cell protein synthesis from waste sludge.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1053-1054"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-25DOI: 10.1038/s44221-024-00333-3
Blake G. Lindner, Konstantinos T. Konstantinidis
{"title":"Faecal contamination of the world’s harbours","authors":"Blake G. Lindner, Konstantinos T. Konstantinidis","doi":"10.1038/s44221-024-00333-3","DOIUrl":"10.1038/s44221-024-00333-3","url":null,"abstract":"Widespread sewage contamination of the world’s harbours can be revealed by combined faecal source tracking, but more work is needed to achieve source apportioning.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1059-1060"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00330-6
Wenguang Wang, Lu Shao
{"title":"Lithium extraction with energy generation","authors":"Wenguang Wang, Lu Shao","doi":"10.1038/s44221-024-00330-6","DOIUrl":"10.1038/s44221-024-00330-6","url":null,"abstract":"Traditional techniques for lithium extraction require considerable energy consumption. A spontaneous process with net energy output driven by counterion gradients presents a promising solution for energetically efficient lithium extraction and enrichment from brine.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1051-1052"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00326-2
Ge Zhang, Yuqi Li, Xun Guan, Guoliang Hu, Hance Su, Xueer Xu, Guangxia Feng, Sanzeeda Baig Shuchi, Sang Cheol Kim, Jiawei Zhou, Rong Xu, Xin Xiao, Allen Wu, Yi Cui
{"title":"Spontaneous lithium extraction and enrichment from brine with net energy output driven by counter-ion gradients","authors":"Ge Zhang, Yuqi Li, Xun Guan, Guoliang Hu, Hance Su, Xueer Xu, Guangxia Feng, Sanzeeda Baig Shuchi, Sang Cheol Kim, Jiawei Zhou, Rong Xu, Xin Xiao, Allen Wu, Yi Cui","doi":"10.1038/s44221-024-00326-2","DOIUrl":"10.1038/s44221-024-00326-2","url":null,"abstract":"To meet the increasing lithium demands created by global electrification, a fast, flexible, inexpensive and sustainable mining process is needed, which is yet to be realized. Here we explore an untapped energy source that is inherent in all ion-separation processes to achieve spontaneous Li extraction with net energy production. The driving force comes from the huge concentration difference of counter ions (usually chloride) between the feeding and receiving solutions. Experimental results under various feeding compositions can be well explained by the Gibbs–Donnan equilibrium. Utilizing a Li-selective ceramic membrane and a chloride-storing silver electrode, we successfully achieved Li extraction from simulated brine with an energy output of 1.6 Wh molLi−1. The system is stable over 300 hours of operation, maintaining a high Li/Mg selectivity of 450. Moreover, even spontaneous enrichment can be achieved when the counter ion concentration is much greater than that of Li ion in the feeding brine. We anticipate that the concept of this work could not only reshape the Li supply chain but also seed a fundamental transformation of all ion-separation processes. Utilizing the immense osmotic energy in membrane separation processes enables spontaneous lithium extraction while generating net energy, offering a promising method for carbon-negative resource recovery.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1091-1101"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00323-5
Shouzhang Peng, César Terrer, Benjamin Smith, Philippe Ciais, Qinggong Han, Jialan Nan, Joshua B. Fisher, Liang Chen, Lei Deng, Kailiang Yu
{"title":"Carbon restoration potential on global land under water resource constraints","authors":"Shouzhang Peng, César Terrer, Benjamin Smith, Philippe Ciais, Qinggong Han, Jialan Nan, Joshua B. Fisher, Liang Chen, Lei Deng, Kailiang Yu","doi":"10.1038/s44221-024-00323-5","DOIUrl":"10.1038/s44221-024-00323-5","url":null,"abstract":"Ecosystem restoration is a critical nature-based solution to mitigate climate change. However, the carbon sequestration potential of restoration, defined as the maximum achievable carbon storage, has likely been overestimated because previous studies have not adequately accounted for the competition between ecosystem water demands for maximizing carbon sequestration and human water needs. Here we used a comprehensive process-based model combined with extensive land-use data and evaporation recycling accounting for land–atmosphere feedback to estimate the water requirements associated with ecosystem restoration. We found that achieving the carbon sequestration potential of restoration would significantly reduce global water availability per capita by 26%, posing considerable risks to water security in water-stressed and highly populated regions. If human water use is safeguarded, the achievable carbon sequestration potential would be reduced by a third (from 396 PgC to 270 PgC). Brazil, the United States and Russia have the largest achievable potentials. Future projections accounting for changes in climate, atmospheric CO2, land use and human population under the shared socioeconomic pathway (SSP) scenarios SSP119, SSP245 and SSP585 suggest an increase in this achievable potential to 274–302 PgC by the end of the century, with China expected to have the largest potential. Our findings provide a nuanced understanding of the trade-offs and synergies between carbon sequestration goals and water security, offering an empirical framework to guide the sustainable implementation of ecosystem restoration strategies. This study provides a nuanced understanding of the trade-offs and synergies between carbon sequestration goals and water security, and offers a data–model integrated framework to guide ecosystem restoration strategies under water resource constraints.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1071-1081"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00328-0
Adriaan J. Teuling
{"title":"Global ecosystem restoration and water resources availability","authors":"Adriaan J. Teuling","doi":"10.1038/s44221-024-00328-0","DOIUrl":"10.1038/s44221-024-00328-0","url":null,"abstract":"Detailed simulations reveal where landscape-scale carbon restoration would have least, or even beneficial, impacts on water resources.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1055-1056"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-18DOI: 10.1038/s44221-024-00335-1
{"title":"The tortuous path towards net zero emissions in the wastewater sector","authors":"","doi":"10.1038/s44221-024-00335-1","DOIUrl":"10.1038/s44221-024-00335-1","url":null,"abstract":"Research and development in the wastewater sector have shown that offsetting greenhouse gas emissions through improved efficiency and resource recovery is possible, but efforts beyond science and engineering are necessary to achieve net zero.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"911-911"},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00335-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-14DOI: 10.1038/s44221-024-00307-5
Tao Liu, Haoran Duan, Sebastian Lücker, Min Zheng, Holger Daims, Zhiguo Yuan, Jianhua Guo
{"title":"Sustainable wastewater management through nitrogen-cycling microorganisms","authors":"Tao Liu, Haoran Duan, Sebastian Lücker, Min Zheng, Holger Daims, Zhiguo Yuan, Jianhua Guo","doi":"10.1038/s44221-024-00307-5","DOIUrl":"10.1038/s44221-024-00307-5","url":null,"abstract":"Nitrogen-cycling microorganisms play essential roles in biological wastewater treatment, where nitrogen is removed with substantial energy and chemical consumption and greenhouse gas emissions. The discoveries of new nitrogen-cycling microorganisms paved the way for a remarkable paradigm shift from energy-negative and carbon-positive to energy-positive and carbon-neutral wastewater management. This Review reflects on the trajectory of these microbial discoveries and summarizes the technological progress enabled by them thus far. By bridging the gap between environmental microbiologists and water engineers, who are both interested in these new nitrogen-cycling microorganisms but with different focuses and expertise, this Review acknowledges the challenges encountered and illuminates the exciting future ahead. The continued close collaboration between scientists and engineers will keep redefining the landscape of wastewater management. This Review highlights how the discovery of new nitrogen-cycling microorganisms paves the way for process iterations and technological innovations towards sustainable wastewater management.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"936-952"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}