长期多元组学解决了废水处理过程中季节性N2O排放的生态生理控制。

Nature water Pub Date : 2025-01-01 Epub Date: 2025-05-07 DOI:10.1038/s44221-025-00430-x
Nina Roothans, Martin Pabst, Menno van Diemen, Claudia Herrera Mexicano, Marcel Zandvoort, Thomas Abeel, Mark C M van Loosdrecht, Michele Laureni
{"title":"长期多元组学解决了废水处理过程中季节性N2O排放的生态生理控制。","authors":"Nina Roothans, Martin Pabst, Menno van Diemen, Claudia Herrera Mexicano, Marcel Zandvoort, Thomas Abeel, Mark C M van Loosdrecht, Michele Laureni","doi":"10.1038/s44221-025-00430-x","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrous oxide (N<sub>2</sub>O) is the third most important greenhouse gas and originates primarily from natural and engineered microbiomes. Effective emission mitigations are currently hindered by the largely unresolved ecophysiological controls of coexisting N<sub>2</sub>O-converting metabolisms in complex communities. To address this, we used biological wastewater treatment as a model ecosystem and combined long-term metagenome-resolved metaproteomics with ex situ kinetic and full-scale operational characterization over nearly 2 years. By leveraging the evidence independently obtained at multiple ecophysiological levels, from individual genetic potential to actual metabolism and emergent community phenotype, the cascade of environmental and operational triggers driving seasonal N<sub>2</sub>O emissions has ultimately been resolved. We identified nitrifier denitrification as the dominant N<sub>2</sub>O-producing pathway and dissolved O<sub>2</sub> as the prime operational parameter, paving the way to the design and fostering of robust emission control strategies. This work exemplifies the untapped potential of multi-meta-omics in the mechanistic understanding and ecological engineering of microbiomes towards reducing anthropogenic impacts and advancing sustainable biotechnological developments.</p>","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 5","pages":"590-604"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098122/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-term multi-meta-omics resolves the ecophysiological controls of seasonal N<sub>2</sub>O emissions during wastewater treatment.\",\"authors\":\"Nina Roothans, Martin Pabst, Menno van Diemen, Claudia Herrera Mexicano, Marcel Zandvoort, Thomas Abeel, Mark C M van Loosdrecht, Michele Laureni\",\"doi\":\"10.1038/s44221-025-00430-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrous oxide (N<sub>2</sub>O) is the third most important greenhouse gas and originates primarily from natural and engineered microbiomes. Effective emission mitigations are currently hindered by the largely unresolved ecophysiological controls of coexisting N<sub>2</sub>O-converting metabolisms in complex communities. To address this, we used biological wastewater treatment as a model ecosystem and combined long-term metagenome-resolved metaproteomics with ex situ kinetic and full-scale operational characterization over nearly 2 years. By leveraging the evidence independently obtained at multiple ecophysiological levels, from individual genetic potential to actual metabolism and emergent community phenotype, the cascade of environmental and operational triggers driving seasonal N<sub>2</sub>O emissions has ultimately been resolved. We identified nitrifier denitrification as the dominant N<sub>2</sub>O-producing pathway and dissolved O<sub>2</sub> as the prime operational parameter, paving the way to the design and fostering of robust emission control strategies. This work exemplifies the untapped potential of multi-meta-omics in the mechanistic understanding and ecological engineering of microbiomes towards reducing anthropogenic impacts and advancing sustainable biotechnological developments.</p>\",\"PeriodicalId\":74252,\"journal\":{\"name\":\"Nature water\",\"volume\":\"3 5\",\"pages\":\"590-604\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098122/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44221-025-00430-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44221-025-00430-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一氧化二氮(N2O)是第三大温室气体,主要来源于天然和工程微生物群。有效的排放减缓目前受到复杂群落中共存的n2o转化代谢在很大程度上未解决的生态生理控制的阻碍。为了解决这个问题,我们使用生物废水处理作为模型生态系统,并将长期宏基因组解析宏蛋白质组学与近2年的非原位动力学和全尺寸操作表征相结合。通过利用在多个生态生理水平上独立获得的证据,从个体遗传潜力到实际代谢和新兴群落表型,最终解决了驱动季节性N2O排放的环境和操作触发级联。我们确定硝化器反硝化是主要的n2o产生途径,溶解O2是主要的操作参数,为设计和促进强大的排放控制策略铺平了道路。这项工作体现了多元组学在微生物组的机制理解和生态工程方面尚未开发的潜力,有助于减少人为影响和促进可持续的生物技术发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term multi-meta-omics resolves the ecophysiological controls of seasonal N2O emissions during wastewater treatment.

Nitrous oxide (N2O) is the third most important greenhouse gas and originates primarily from natural and engineered microbiomes. Effective emission mitigations are currently hindered by the largely unresolved ecophysiological controls of coexisting N2O-converting metabolisms in complex communities. To address this, we used biological wastewater treatment as a model ecosystem and combined long-term metagenome-resolved metaproteomics with ex situ kinetic and full-scale operational characterization over nearly 2 years. By leveraging the evidence independently obtained at multiple ecophysiological levels, from individual genetic potential to actual metabolism and emergent community phenotype, the cascade of environmental and operational triggers driving seasonal N2O emissions has ultimately been resolved. We identified nitrifier denitrification as the dominant N2O-producing pathway and dissolved O2 as the prime operational parameter, paving the way to the design and fostering of robust emission control strategies. This work exemplifies the untapped potential of multi-meta-omics in the mechanistic understanding and ecological engineering of microbiomes towards reducing anthropogenic impacts and advancing sustainable biotechnological developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信