{"title":"Limitations and drawbacks of DQE estimation methods applied to electron detectors.","authors":"Olivier Marcelot, Cécile Marcelot, Sébastien Rolando","doi":"10.1093/jmicro/dfae016","DOIUrl":"10.1093/jmicro/dfae016","url":null,"abstract":"<p><p>The detective quantum efficiency (DQE) is generally accepted as the main figure of merit for the comparison between electron detectors, and most of the time given as a unique number at the Nyquist frequency while it is known to vary with electron dose. It is usually estimated, thanks to a method improved by McMullan in 2009. The purpose of this work is to analyze and to criticize this DQE extraction method on the basis of measurement and model results, and to give recommendations for fair comparison between detectors, wondering if the DQE is the right figure of merit for electron detectors.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"405-413"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction of: Ultrastructural immunohistochemical study of L-type amino acid transporter 1-4F2 heavy chain in tumor microvasculatures of N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) induced rat bladder carcinoma.","authors":"","doi":"10.1093/jmicro/dfae033","DOIUrl":"10.1093/jmicro/dfae033","url":null,"abstract":"","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"456"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Hilbert-differential phase contrast to scanning transmission electron microscopy.","authors":"Haruka Iga, Toshiki Shimizu, Hiroki Minoda","doi":"10.1093/jmicro/dfae015","DOIUrl":"10.1093/jmicro/dfae015","url":null,"abstract":"<p><p>We report a novel class of scanning transmission electron microscopy with Hilbert-differential phase contrast (HDP-STEM) that displays nanostructures of thin samples in a topographical manner. A semicircular π-phase plate (PP) was used as an optical device for manipulating electron waves in HDP-STEM. This is the different design from the Zernike PP used in our previous phase plate STEM (P-STEM), but both must be placed in the front focal plane of the condenser lens. HDP-STEM images of multiwalled carbon nanotubes showed higher contrast than those obtained by conventional bright-field STEM. As the PP of the HDP-STEM is nonsymmetrical, several different images were obtained by changing the detection conditions. A two-dimensional electron detector was also used to remove the scattering contrast component in the same way as with the Zernike PP and obtain an image containing only (differential) phase contrast.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"414-421"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective alignment method using a diamond notch knife for correlative array tomography.","authors":"Yumi Goto, Noriko Takeda-Kamiya, Kaori Yamaguchi, Mikio Yamazaki, Kiminori Toyooka","doi":"10.1093/jmicro/dfae013","DOIUrl":"10.1093/jmicro/dfae013","url":null,"abstract":"<p><p>Correlative array tomography, combining light and electron microscopy via serial sections, plays a crucial role in the three-dimensional ultrastructural visualization and molecular distribution analysis in biological structures. To address the challenges of aligning fluorescence and electron microscopy images and aligning serial sections of irregularly shaped biological specimens, we developed a diamond notch knife, a new tool for puncturing holes using a diamond needle. The diamond needle featured a triangular and right-angled tip, enabling the drilling of deep holes upon insertion into the polished block face. This study describes the application of the diamond notch knife in correlative array tomography.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"446-450"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking the potential of large-scale 3D imaging with tissue clearing techniques.","authors":"Etsuo A Susaki","doi":"10.1093/jmicro/dfae046","DOIUrl":"https://doi.org/10.1093/jmicro/dfae046","url":null,"abstract":"<p><p>The three-dimensional (3D) anatomical structure of living organisms is intrinsically linked to their functions, yet modern life sciences have not fully explored this aspect. Recently, the combination of efficient tissue clearing techniques and light-sheet fluorescence microscopy (LSFM) for rapid 3D imaging has improved access to 3D spatial information in biological systems. This technology has found applications in various fields, including neuroscience, cancer research, and clinical histopathology, leading to significant insights. It allows imaging of entire organs or even whole bodies of animals and humans at multiple scales. Moreover, it enables a form of spatial omics by capturing and analyzing cellome information, which represents the complete spatial organization of cells. While current 3D imaging of cleared tissues has limitations in obtaining sufficient molecular information, emerging technologies such as multi-round tissue staining and super-multicolor imaging are expected to address these constraints. 3D imaging using tissue clearing and light-sheet microscopy thus offers a valuable research tool in the current and future life sciences for acquiring and analyzing large-scale biological spatial information.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electron holography observation of electron spin polarization around charged insulating wire.","authors":"Takafumi Sato, Keiko Shimada, Zentaro Akase, Hideyuki Magara, Takeshi Tomita, Daisuke Shindo","doi":"10.1093/jmicro/dfad056","DOIUrl":"10.1093/jmicro/dfad056","url":null,"abstract":"<p><p>We report direct observation by electron holography of the spin polarization of electrons in a vacuum region around a charged SiO2 wire coated with Pt-Pd. Irradiating the SiO2 wire with 300 keV electrons caused the wire to become positively charged due to the emission of secondary electrons. The spin polarization of these electrons interacting with the charged wire was observed in situ using a phase reconstruction process under an external magnetic field. The magnetic field of the spin-polarized electrons was simulated taking into account the distribution of secondary electrons and the effect of the external magnetic field.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"367-375"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89721004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-dimensional nanostructure analysis of non-stained Nafion in fuel-cell electrode by combined ADF-STEM tomography.","authors":"Takuji Ube","doi":"10.1093/jmicro/dfae002","DOIUrl":"10.1093/jmicro/dfae002","url":null,"abstract":"<p><p>The polymer electrolyte fuel cell (PEFC) is one of the strongest candidates for a next-generation power source for vehicles which do not emit CO2 gas as exhaust gas. The key factor in PEFCs is the nano-scaled electrochemical reactions that take place on the catalyst material and an ionomer supported by a carbon support. However, because the nano-scaled morphological features of the key materials in the catalyst compound cannot be observed clearly by transmission electron microscopy, improvement of PEFC performance had been approached by an imaginal schematic diagram based on an electrochemical analysis. In this study, we revealed the nano-scaled morphological features of the PEFC electrode in three dimensions and performed a quantitative analysis of the nanostructure by the newly developed 'Combined ADF-STEM tomography technique'. This method combines information from plural annular darkfield detectors with different electron collection angles and can emphasize the difference of the electron scattering intensity between the ionomer and carbon in the cross-sectional image of the reconstructed three-dimensional (3D) data. Therefore, this segmentation method utilizing image contrast does not require a high electron beam current like that used in energy dispersive X-ray analysis, and thus is suitable for electron beam damage-sensitive materials. By eliminating the process of manually determining the thresholds for obtaining classified component data from grayscale data, the obtained 3D structures have sufficient accuracy to allow quantitative analysis and specify the nano-scaled structural parameters directly related to power generation characteristics.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"318-328"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Observation and quantitative analysis of dislocations in steel using electron channeling contrast imaging method with precise control of electron beam incident direction.","authors":"Takashige Mori, Takafumi Amino, Chie Yokoyama, Shunsuke Taniguchi, Takayuki Yonezawa, Akira Taniyama","doi":"10.1093/jmicro/dfad061","DOIUrl":"10.1093/jmicro/dfad061","url":null,"abstract":"<p><p>Electron channeling contrast imaging (ECCI) was applied by precisely controlling the primary electron beam incident direction of the crystal plane in scanning electron microscope (SEM), and the dislocation contrast in steel materials was investigated in detail via SEM/ECCI. The dislocation contrast was observed near a channeling condition, where the incident electron beam direction of the crystal plane varied, and the backscattered electron intensity reached a local minimum. Comparing the dislocation contrasts in the visualized electron channeling contrast (ECC) images and transmission electron microscope (TEM) images, the positions of all dislocation lines were coincident. During the SEM/ECCI observation, the dislocation contrast varied depending on the incident electron beam direction of the crystal plane and accelerating voltages, and optimal conditions existed. When the diffraction condition g and the Burgers vector b of dislocation satisfied the condition g⸱b = 0, the screw dislocation contrast in the ECC image disappeared. An edge dislocation line was wider than a screw dislocation line. Thus, the SEM/ECCI method can be used for dislocation characterization and the strain field evaluation around dislocation, like the TEM method. The depth information of SEM/ECCI, where the channeling condition is strictly satisfied, can be obtained from dislocation contrast deeper than 5ξg, typically used for depth of SEM/ECCI.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"308-317"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artifactual atomic displacements on surfaces using annular dark-field images with image simulation.","authors":"Shunsuke Kobayashi, Kousuke Ooe, Kei Nakayama, Akihide Kuwabara","doi":"10.1093/jmicro/dfae001","DOIUrl":"10.1093/jmicro/dfae001","url":null,"abstract":"<p><p>We investigated artifactual atomic displacements on a Pt (111) surface using annular dark-field (ADF) scanning transmission electron microscopy images under ideal conditions with multi-slice image simulation. Pt atomic columns on the surface exhibited artifact displacement. The bright spots shifted slightly toward the interior of the crystal, indicating that ADF imaging underestimates atomic distance measurements on the crystal surface. Multiple peak fitting is an effective method for determining the positions of bright spots and obtaining more accurate atomic positions while reducing the impact of surface-related artifacts. This is important for the measurement of interatomic distances on crystal surfaces, particularly for catalyst particles.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"349-353"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingzhi Zeng, Wenzhao Wang, Yang Yin, Changlin Zheng
{"title":"A simple coordinate transformation method for quickly locating the features of interest in TEM samples.","authors":"Mingzhi Zeng, Wenzhao Wang, Yang Yin, Changlin Zheng","doi":"10.1093/jmicro/dfae009","DOIUrl":"10.1093/jmicro/dfae009","url":null,"abstract":"<p><p>We developed a simple coordinate transformation method for quickly locating features of interest (FOIs) of samples in transmission electron microscope (TEM). The method is well suited for conducting sample searches in aberration-corrected scanning/transmission electron microscopes (S/TEM), where the survey can be very time-consuming because of the limited field of view imposed by the highly excited objective lens after fine-tuning the aberration correctors. For implementation, a digital image of the sample and the TEM holder was captured using a simple stereo-optical microscope. Naturally presented geometric patterns on the holder were referenced to construct a projective transformation between the electron and optical coordinate systems. The test results demonstrated that the method was accurate and required no electron microscope or specimen holder modifications. Additionally, it eliminated the need to mount the sample onto specific patterned TEM grids or deposit markers, resulting in universal applications for most TEM samples, holders and electron microscopes for fast FOI identification. Furthermore, we implemented the method into a Gatan script for graphical-user-interface-based step-by-step instructions. Through online communication, the script enabled real-time navigation and tracking of the motion of samples in TEM on enlarged optical images with a panoramic view.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"381-387"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}