microLifePub Date : 2024-02-14eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae001
Clara Moreno-Fenoll, Maxime Ardré, Paul B Rainey
{"title":"Polar accumulation of pyoverdin and exit from stationary phase.","authors":"Clara Moreno-Fenoll, Maxime Ardré, Paul B Rainey","doi":"10.1093/femsml/uqae001","DOIUrl":"10.1093/femsml/uqae001","url":null,"abstract":"<p><p>Pyoverdin is a water-soluble metal-chelator synthesized by members of the genus <i>Pseudomonas</i> and used for the acquisition of insoluble ferric iron. Although freely diffusible in aqueous environments, preferential dissemination of pyoverdin among adjacent cells, fine-tuning of intracellular siderophore concentrations, and fitness advantages to pyoverdin-producing versus nonproducing cells, indicate control of location and release. Here, using time-lapse fluorescence microscopy to track single cells in growing microcolonies of <i>Pseudomonas fluorescens</i> SBW25, we show accumulation of pyoverdin at cell poles. Accumulation occurs on cessation of cell growth, is achieved by cross-feeding in pyoverdin-nonproducing mutants and is reversible. Moreover, accumulation coincides with localization of a fluorescent periplasmic reporter, suggesting that pyoverdin accumulation at cell poles is part of the general cellular response to starvation. Compatible with this conclusion is absence of non-accumulating phenotypes in a range of pyoverdin mutants. Analysis of the performance of pyoverdin-producing and nonproducing cells under conditions promoting polar accumulation shows an advantage to accumulation on resumption of growth after stress. Examination of pyoverdin polar accumulation in a multispecies community and in a range of laboratory and natural species of <i>Pseudomonas</i>, including <i>P. aeruginosa</i> PAO1 and <i>P. putida</i> KT2440, confirms that the phenotype is characteristic of <i>Pseudomonas</i>.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae001"},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-01-03DOI: 10.1093/femsml/uqad048
Bastiaan P Kuiper, Anna M C Schöntag, H. M. Oksanen, Bertram Daum, Tessa E. F. Quax
{"title":"Archaeal virus entry and egress","authors":"Bastiaan P Kuiper, Anna M C Schöntag, H. M. Oksanen, Bertram Daum, Tessa E. F. Quax","doi":"10.1093/femsml/uqad048","DOIUrl":"https://doi.org/10.1093/femsml/uqad048","url":null,"abstract":"\u0000 Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses infecting other domains of life. Here we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"58 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-12-20DOI: 10.1093/femsml/uqad047
Anders Nørgaard Sørensen, Dorottya Kalmar, V. T. Lutz, Victor Klein-Sousa, Nicholas M I Taylor, M. C. H. Sørensen, L. Brøndsted
{"title":"Agtrevirus phage AV101 recognizes four different O-antigens infecting diverse E. coli","authors":"Anders Nørgaard Sørensen, Dorottya Kalmar, V. T. Lutz, Victor Klein-Sousa, Nicholas M I Taylor, M. C. H. Sørensen, L. Brøndsted","doi":"10.1093/femsml/uqad047","DOIUrl":"https://doi.org/10.1093/femsml/uqad047","url":null,"abstract":"\u0000 Bacteriophages in the Agtrevirus genus are known for expressing multiple tail spike proteins (TSPs), but little is known about their genetic diversity and host recognition apart from their ability to infect diverse Enterobacteriaceae species. Here we aim to determine the genetic differences that may account for the diverse host ranges of Agrevirus phages. We performed comparative genomics of 14 Agtrevirus and identified only a few genetic differences including genes involved in nucleotide metabolism. Most notably was the diversity of the tsp gene cluster, specifically in the receptor binding domains that were unique among most of the phages. We further characterized agtrevirus AV101 infecting nine diverse Extended Spectrum β-lactamase (ESBL) E. coli and demonstrated that this phage encoded four unique TSPs among Agtrevirus. Purified TSPs formed translucent zones and inhibited AV101 infection of specific hosts, demonstrating that TSP1, TSP2, TSP3, and TSP4 recognize O8, O82, O153, and O159 O-antigens of E. coli, respectively. BLASTp analysis showed that the receptor binding domain of TSP1, TSP2, TSP3 and TSP4 are similar to TSPs encoded by E. coli prophages and distant related virulent phages. Thus, Agtrevirus may have gained their receptor binding domains by recombining with prophages or virulent phages. Overall, combining bioinformatic and biological data expands the understanding of TSP host recognition of Agtrevirus and give new insight into the origin and acquisition of receptor binding domains of Ackermannviridae phages.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138954605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-12-11eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqad046
Michael Baumschabl, Bernd M Mitic, Christina Troyer, Stephan Hann, Özge Ata, Diethard Mattanovich
{"title":"A native phosphoglycolate salvage pathway of the synthetic autotrophic yeast <i>Komagataella phaffii</i>.","authors":"Michael Baumschabl, Bernd M Mitic, Christina Troyer, Stephan Hann, Özge Ata, Diethard Mattanovich","doi":"10.1093/femsml/uqad046","DOIUrl":"10.1093/femsml/uqad046","url":null,"abstract":"<p><p>Synthetic autotrophs can serve as chassis strains for bioproduction from CO<sub>2</sub> as a feedstock to take measures against the climate crisis. Integration of the Calvin-Benson-Bassham (CBB) cycle into the methylotrophic yeast <i>Komagataella phaffii</i> (<i>Pichia pastoris</i>) enabled it to use CO<sub>2</sub> as the sole carbon source. The key enzyme in this cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzing the carboxylation step. However, this enzyme is error prone to perform an oxygenation reaction leading to the production of toxic 2-phosphoglycolate. Native autotrophs have evolved different recycling pathways for 2-phosphoglycolate. However, for synthetic autotrophs, no information is available for the existence of such pathways. Deletion of <i>CYB2</i> in the autotrophic <i>K. phaffii</i> strain led to the accumulation of glycolate, an intermediate in phosphoglycolate salvage pathways, suggesting that such a pathway is enabled by native <i>K. phaffii</i> enzymes. <sup>13</sup>C tracer analysis with labeled glycolate indicated that the yeast pathway recycling phosphoglycolate is similar to the plant salvage pathway. This orthogonal yeast pathway may serve as a sensor for RuBisCO oxygenation, and as an engineering target to boost autotrophic growth rates in <i>K. phaffii</i>.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqad046"},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139486758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-11-03DOI: 10.1093/femsml/uqad045
Jörg Vogel, Victor de Lorenzo
{"title":"EAM highlights in FEMS 2023: from the Petri dish to planet Earth","authors":"Jörg Vogel, Victor de Lorenzo","doi":"10.1093/femsml/uqad045","DOIUrl":"https://doi.org/10.1093/femsml/uqad045","url":null,"abstract":"Abstract On July 9–13, 2023, the 10th FEMS Congress took place in Hamburg, Germany. As part of this major event in European microbiology, the European Academy of Microbiology (EAM) organised two full sessions. One of these sessions aimed to highlight the research of four recently elected EAM fellows and saw presentations on bacterial group behaviours and development of resistance to antibiotics, as well as on new RNA viruses including bacteriophages and giant viruses of amoebae. The other session included five frontline environmental microbiologists who showcased real-world examples of how human activities have disrupted the balance in microbial ecosystems, not just to assess the current situation but also to explore fresh approaches for coping with external disturbances. Both sessions were very well attended, and no doubt helped to gain the EAM and its Fellows more visibility.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"23 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135874683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-10-26DOI: 10.1093/femsml/uqad044
Mikhail Skutel, Aleksandr Andriianov, Maria Zavialova, Maria Kirsanova, Olufasefunmi Shodunke, Evgenii Zorin, Aleksandr Golovshchinskii, Konstantin Severinov, Artem Isaev
{"title":"T5-like phage BF23 evades host-mediated DNA restriction and methylation","authors":"Mikhail Skutel, Aleksandr Andriianov, Maria Zavialova, Maria Kirsanova, Olufasefunmi Shodunke, Evgenii Zorin, Aleksandr Golovshchinskii, Konstantin Severinov, Artem Isaev","doi":"10.1093/femsml/uqad044","DOIUrl":"https://doi.org/10.1093/femsml/uqad044","url":null,"abstract":"Abstract Bacteriophage BF23 is a close relative of phage T5, a prototypical Tequintavirus that infects Escherichia coli. BF23 was isolated in the middle of the XXth century and was extensively studied as a model object. Like T5, BF23 carries long ∼9.7 kbp terminal repeats, injects its genome into infected cell in a two-stage process, and carries multiple specific nicks in its double-stranded genomic DNA. The two phages rely on different host secondary receptors – FhuA (T5) and BtuB (BF23). Only short fragments of the BF23 genome, including the region encoding receptor interacting proteins, have been determined. Here, we report the full genomic sequence of BF23 and describe the protein content of its virion. T5-like phages represent a unique group that resist restriction by most nuclease-based host immunity systems. We show that BF23, like other Tequintavirus phages, resist Types I/II/III restriction-modification host immunity systems if their recognition sites are located outside the terminal repeats. We also demonstrate that the BF23 avoids host-mediated methylation. We propose that inhibition of methylation is a common feature of Tequintavirus and Epseptimavirus genera phages, that is not, however, associated with their anti-restriction activity.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"10 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135012350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-10-20eCollection Date: 2023-01-01DOI: 10.1093/femsml/uqad043
Christina Herzberg, Janek Meißner, Robert Warneke, Jörg Stülke
{"title":"The many roles of cyclic di-AMP to control the physiology of <i>Bacillus subtilis</i>.","authors":"Christina Herzberg, Janek Meißner, Robert Warneke, Jörg Stülke","doi":"10.1093/femsml/uqad043","DOIUrl":"10.1093/femsml/uqad043","url":null,"abstract":"<p><p>The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium <i>Bacillus subtilis</i> as well as in many bacteria and archaea. <i>Bacillus subtilis</i> possesses three diadenylate cyclases and two phosphodiesterases that synthesize and degrade the molecule, respectively. Among the second messengers, c-di-AMP is unique since it is essential for <i>B. subtilis</i> on the one hand but toxic upon accumulation on the other. This role as an \"essential poison\" is related to the function of c-di-AMP in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to riboswitches and transporters and activates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal transduction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state, i.e. in the absence of c-di-AMP. For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle, oxaloacetate, respectively. In the absence of c-di-AMP, many amino acids inhibit the growth of <i>B. subtilis</i>. This feature can be used to identify novel players in amino acid homeostasis. In this review, we discuss the different functions of c-di-AMP and their physiological relevance.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 ","pages":"uqad043"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89721000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-10-20eCollection Date: 2023-01-01DOI: 10.1093/femsml/uqad040
{"title":"Correction to: A leader cell triggers end of lag phase in populations of Pseudomonas <i>fluorescens</i>.","authors":"","doi":"10.1093/femsml/uqad040","DOIUrl":"10.1093/femsml/uqad040","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/femsml/uqac022.].</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 ","pages":"uqad040"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-10-18eCollection Date: 2023-01-01DOI: 10.1093/femsml/uqad042
Matteo Buffi, Guillaume Cailleau, Thierry Kuhn, Xiang-Yi Li Richter, Claire E Stanley, Lukas Y Wick, Patrick S Chain, Saskia Bindschedler, Pilar Junier
{"title":"Fungal drops: a novel approach for macro- and microscopic analyses of fungal mycelial growth.","authors":"Matteo Buffi, Guillaume Cailleau, Thierry Kuhn, Xiang-Yi Li Richter, Claire E Stanley, Lukas Y Wick, Patrick S Chain, Saskia Bindschedler, Pilar Junier","doi":"10.1093/femsml/uqad042","DOIUrl":"10.1093/femsml/uqad042","url":null,"abstract":"<p><p>This study presents an inexpensive approach for the macro- and microscopic observation of fungal mycelial growth. The 'fungal drops' method allows to investigate the development of a mycelial network in filamentous microorganisms at the colony and hyphal scales. A heterogeneous environment is created by depositing 15-20 µl drops on a hydrophobic surface at a fixed distance. This system is akin to a two-dimensional (2D) soil-like structure in which aqueous-pockets are intermixed with air-filled pores. The fungus (spores or mycelia) is inoculated into one of the drops, from which hyphal growth and exploration take place. Hyphal structures are assessed at different scales using stereoscopic and microscopic imaging. The former allows to evaluate the local response of regions within the colony (modular behaviour), while the latter can be used for fractal dimension analyses to describe the hyphal network architecture. The method was tested with several species to underpin the transferability to multiple species. In addition, two sets of experiments were carried out to demonstrate its use in fungal biology. First, mycelial reorganization of <i>Fusarium oxysporum</i> was assessed as a response to patches containing different nutrient concentrations. Second, the effect of interactions with the soil bacterium <i>Pseudomonas putida</i> on habitat colonization by the same fungus was assessed. This method appeared as fast and accessible, allowed for a high level of replication, and complements more complex experimental platforms. Coupled with image analysis, the fungal drops method provides new insights into the study of fungal modularity both macroscopically and at a single-hypha level.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 ","pages":"uqad042"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107592977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2023-10-10eCollection Date: 2023-01-01DOI: 10.1093/femsml/uqad041
Ákos T Kovács
{"title":"Colony morphotype diversification as a signature of bacterial evolution.","authors":"Ákos T Kovács","doi":"10.1093/femsml/uqad041","DOIUrl":"https://doi.org/10.1093/femsml/uqad041","url":null,"abstract":"<p><p>The appearance of colony morphotypes is a signature of genetic diversification in evolving bacterial populations. Colony structure highly depends on the cell-cell interactions and polymer production that are adjusted during evolution in an environment that allows the development of spatial structures. Nucci and colleagues describe the emergence of a rough and dry morphotype of a noncapsulated <i>Klebsiella variicola</i> strain during a laboratory evolution study, resembling genetic changes observed in clinical isolates.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 ","pages":"uqad041"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}