金黄色葡萄球菌基因组非连续操作子图谱

microLife Pub Date : 2024-03-30 DOI:10.1093/femsml/uqae007
Pablo Iturbe, Alvaro San Martín, Hiroshi Hamamoto, Marina Marcet, Toni Gabaldon, C. Solano, Í. Lasa
{"title":"金黄色葡萄球菌基因组非连续操作子图谱","authors":"Pablo Iturbe, Alvaro San Martín, Hiroshi Hamamoto, Marina Marcet, Toni Gabaldon, C. Solano, Í. Lasa","doi":"10.1093/femsml/uqae007","DOIUrl":null,"url":null,"abstract":"\n Bacteria synchronise the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of eighteen NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin-antitoxin systems and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.","PeriodicalId":74189,"journal":{"name":"microLife","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncontiguous operon atlas for the Staphylococcus aureus genome\",\"authors\":\"Pablo Iturbe, Alvaro San Martín, Hiroshi Hamamoto, Marina Marcet, Toni Gabaldon, C. Solano, Í. Lasa\",\"doi\":\"10.1093/femsml/uqae007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Bacteria synchronise the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of eighteen NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin-antitoxin systems and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.\",\"PeriodicalId\":74189,\"journal\":{\"name\":\"microLife\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsml/uqae007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqae007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌通过将基因组织成操作子来同步表达具有相关功能的基因,从而使它们在单个多聚体信使核糖核酸中共同转录。然而,如果操作子蛋白质的同时产生与拮抗基因的表达受到抑制相吻合,某些细胞过程就会受益。为了协调这种情况,细菌进化出了非连续操作子(NcOs),这是一种包含一个或多个基因的操作子亚型,其转录方向与其他操作子基因相反。这种结构导致转录本重叠,其表达相互抑制。NcOs 的存在无法通过计算来预测,要识别它们需要对细菌转录组有详细的了解。在本研究中,我们使用直接 RNA 测序方法确定了金黄色葡萄球菌基因组中的 NcOs 图谱。我们在金黄色葡萄球菌的基因组中检测到 18 个 NcOs,在溶菌原体 80α 的基因组中检测到 4 个 NcOs。所发现的NcO包括参与能量代谢、金属获取和运输、毒素-抗毒素系统以及控制噬菌体生命周期的基因。我们用甲基醌操作子作为概念证明,表明 NcO 结构的混乱会导致甲基醌水平的增加和耗氧率的降低,从而降低细菌的适应性。我们的研究证明了 NcO 结构在细菌生理学中的重要性,并强调了将操作子图谱与转录组数据相结合以发现相邻基因之间以前未被注意到的功能关系的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncontiguous operon atlas for the Staphylococcus aureus genome
Bacteria synchronise the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of eighteen NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin-antitoxin systems and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信