Yu Han, Jonas Hammerl, Felicitas E Flemming, Nils Schuergers, Annegret Wilde
{"title":"蓝藻类趋光性系统通过磷酸化两个拮抗反应调节因子来控制趋光性定向。","authors":"Yu Han, Jonas Hammerl, Felicitas E Flemming, Nils Schuergers, Annegret Wilde","doi":"10.1093/femsml/uqae012","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in <i>Synechocystis</i> sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators <i>in vitro</i> and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae012"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181946/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators.\",\"authors\":\"Yu Han, Jonas Hammerl, Felicitas E Flemming, Nils Schuergers, Annegret Wilde\",\"doi\":\"10.1093/femsml/uqae012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in <i>Synechocystis</i> sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators <i>in vitro</i> and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.</p>\",\"PeriodicalId\":74189,\"journal\":{\"name\":\"microLife\",\"volume\":\"5 \",\"pages\":\"uqae012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsml/uqae012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqae012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators.
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.