microLifePub Date : 2024-06-05eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae013
Stephen R Garrett, Andrew B Higginson, Tracy Palmer
{"title":"Multiple variants of the type VII secretion system in Gram-positive bacteria.","authors":"Stephen R Garrett, Andrew B Higginson, Tracy Palmer","doi":"10.1093/femsml/uqae013","DOIUrl":"10.1093/femsml/uqae013","url":null,"abstract":"<p><p>Type VII secretion systems (T7SS) are found in bacteria across the Bacillota and Actinomycetota phyla and have been well described in <i>Staphylococcus aureus, Bacillus subtilis</i>, and pathogenic mycobacteria. The T7SS from Actinomycetota and Bacillota share two common components, a membrane-bound EccC/EssC ATPase and EsxA, a small helical hairpin protein of the WXG100 family. However, they also have additional phylum-specific components, and as a result they are termed the T7SSa (Actinomycetota) and T7SSb (Bacillota), respectively. Here, we identify additional organizations of the T7SS across these two phyla and describe eight additional T7SS subtypes, which we have named T7SSc-T7SSj. T7SSd is found exclusively in Actinomycetota including the <i>Olselnella</i> and <i>Bifodobacterium</i> genus, whereas the other seven are found only in Bacillota. All of the novel subtypes contain the canonical ATPase (TsxC) and the WXG100-family protein (TsxA). Most of them also contain a small ubiquitin-related protein, TsxB, related to the T7SSb EsaB/YukD component. Protein kinases, phosphatases, and forkhead-associated (FHA) proteins are often encoded in the novel T7SS gene clusters. Candidate substrates of these novel T7SS subtypes include LXG-domain and RHS proteins. Predicted substrates are frequently encoded alongside genes for additional small WXG100-related proteins that we speculate serve as cosecretion partners. Collectively our findings reveal unexpected diversity in the T7SS in Gram-positive bacteria.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae013"},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-05-27eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae012
Yu Han, Jonas Hammerl, Felicitas E Flemming, Nils Schuergers, Annegret Wilde
{"title":"A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators.","authors":"Yu Han, Jonas Hammerl, Felicitas E Flemming, Nils Schuergers, Annegret Wilde","doi":"10.1093/femsml/uqae012","DOIUrl":"10.1093/femsml/uqae012","url":null,"abstract":"<p><p>Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in <i>Synechocystis</i> sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators <i>in vitro</i> and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae012"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-05-22eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae010
{"title":"Correction to: multireceptor phage cocktail against <i>Salmonella enterica</i> to circumvent phage resistance.","authors":"","doi":"10.1093/femsml/uqae010","DOIUrl":"https://doi.org/10.1093/femsml/uqae010","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/femsml/uqae003.].</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae010"},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-05-20eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae011
Carrie Julia Moore, Till L V Bornemann, Perla Abigail Figueroa-Gonzalez, Sarah P Esser, Cristina Moraru, André Rodrigues Soares, Tjorven Hinzke, Anke Trautwein-Schult, Sandra Maaß, Dörte Becher, Joern Starke, Julia Plewka, Lousia Rothe, Alexander J Probst
{"title":"Time-series metaproteogenomics of a high-CO<sub>2</sub> aquifer reveals active viruses with fluctuating abundances and broad host ranges.","authors":"Carrie Julia Moore, Till L V Bornemann, Perla Abigail Figueroa-Gonzalez, Sarah P Esser, Cristina Moraru, André Rodrigues Soares, Tjorven Hinzke, Anke Trautwein-Schult, Sandra Maaß, Dörte Becher, Joern Starke, Julia Plewka, Lousia Rothe, Alexander J Probst","doi":"10.1093/femsml/uqae011","DOIUrl":"10.1093/femsml/uqae011","url":null,"abstract":"<p><p>Ecosystems subject to mantle degassing are of particular interest for understanding global biogeochemistry, as their microbiomes are shaped by prolonged exposure to high CO<sub>2</sub> and have recently been suggested to be highly active. While the genetic diversity of bacteria and archaea in these deep biosphere systems have been studied extensively, little is known about how viruses impact these microbial communities. Here, we show that the viral community in a high-CO<sub>2</sub> cold-water geyser (Wallender Born, Germany) undergoes substantial fluctuations over a period of 12 days, although the corresponding prokaryotic community remains stable, indicating a newly observed \"infect to keep in check\" strategy that maintains prokaryotic community structure. We characterized the viral community using metagenomics and metaproteomics, revealing 8 654 viral operational taxonomic units (vOTUs). CRISPR spacer-to-protospacer matching linked 278 vOTUs to 32 hosts, with many vOTUs sharing hosts from different families. High levels of viral structural proteins present in the metaproteome (several structurally annotated based on AlphaFold models) indicate active virion production at the time of sampling. Viral genomes expressed many proteins involved in DNA metabolism and manipulation, and encoded for auxiliary metabolic genes, which likely bolster phosphate and sulfur metabolism of their hosts. The active viral community encodes genes to facilitate acquisition and transformation of host nutrients, and appears to consist of many nutrient-demanding members, based on abundant virion proteins. These findings indicate viruses are inextricably linked to the biogeochemical cycling in this high-CO<sub>2</sub> environment and substantially contribute to prokaryotic community stability in the deep biosphere hotspots.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae011"},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-04-12DOI: 10.1093/femsml/uqae009
{"title":"Correction to: Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance","authors":"","doi":"10.1093/femsml/uqae009","DOIUrl":"https://doi.org/10.1093/femsml/uqae009","url":null,"abstract":"[This corrects the article DOI: 10.1093/femsml/uqae003.].","PeriodicalId":74189,"journal":{"name":"microLife","volume":"25 60","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-04-05DOI: 10.1093/femsml/uqae008
Pascale Cossart, Jörg Hacker, David H Holden, Staffan Normark, Jörg Vogel
{"title":"Meeting report ‘Microbiology 2023: from single cell to microbiome and host’, an international interacademy conference in Würzburg","authors":"Pascale Cossart, Jörg Hacker, David H Holden, Staffan Normark, Jörg Vogel","doi":"10.1093/femsml/uqae008","DOIUrl":"https://doi.org/10.1093/femsml/uqae008","url":null,"abstract":"Abstract On September 20–22 September 2023, the international conference ‘Microbiology 2023: from single cell to microbiome and host’ convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"18 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140738845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-04-05eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae006
Jean-Marie Alempic, Hugo Bisio, Alejandro Villalta, Sébastien Santini, Audrey Lartigue, Alain Schmitt, Claire Bugnot, Anna Notaro, Lucid Belmudes, Annie Adrait, Olivier Poirot, Denis Ptchelkine, Cristina De Castro, Yohann Couté, Chantal Abergel
{"title":"Functional redundancy revealed by the deletion of the mimivirus GMC-oxidoreductase genes.","authors":"Jean-Marie Alempic, Hugo Bisio, Alejandro Villalta, Sébastien Santini, Audrey Lartigue, Alain Schmitt, Claire Bugnot, Anna Notaro, Lucid Belmudes, Annie Adrait, Olivier Poirot, Denis Ptchelkine, Cristina De Castro, Yohann Couté, Chantal Abergel","doi":"10.1093/femsml/uqae006","DOIUrl":"10.1093/femsml/uqae006","url":null,"abstract":"<p><p>The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family <i>Mimiviridae</i>, suggesting this may be the major evolutionary force behind their giant genomes.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae006"},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-03-30DOI: 10.1093/femsml/uqae007
Pablo Iturbe, Alvaro San Martín, Hiroshi Hamamoto, Marina Marcet, Toni Gabaldon, C. Solano, Í. Lasa
{"title":"Noncontiguous operon atlas for the Staphylococcus aureus genome","authors":"Pablo Iturbe, Alvaro San Martín, Hiroshi Hamamoto, Marina Marcet, Toni Gabaldon, C. Solano, Í. Lasa","doi":"10.1093/femsml/uqae007","DOIUrl":"https://doi.org/10.1093/femsml/uqae007","url":null,"abstract":"\u0000 Bacteria synchronise the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of eighteen NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin-antitoxin systems and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"42 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140362205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-03-28DOI: 10.1093/femsml/uqae005
Benjamin Kumwenda, Rocío Canals, A. Predeus, Xiaojun Zhu, Carsten Kröger, Caisey V. Pulford, N. Wenner, Lizeth Lacharme Lora, Yan Li, S. Owen, Dean Everett, K. Hokamp, R. Heyderman, Philip M Ashton, Melita A Gordon, C. Msefula, Jay C. D. Hinton
{"title":"Salmonella enterica serovar Typhimurium ST313 sublineage 2.2 has emerged in Malawi with a characteristic gene expression signature and a fitness advantage","authors":"Benjamin Kumwenda, Rocío Canals, A. Predeus, Xiaojun Zhu, Carsten Kröger, Caisey V. Pulford, N. Wenner, Lizeth Lacharme Lora, Yan Li, S. Owen, Dean Everett, K. Hokamp, R. Heyderman, Philip M Ashton, Melita A Gordon, C. Msefula, Jay C. D. Hinton","doi":"10.1093/femsml/uqae005","DOIUrl":"https://doi.org/10.1093/femsml/uqae005","url":null,"abstract":"\u0000 Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterised S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineage 2.2 and 2.3 respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineage 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed-growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"120 47","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140369987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microLifePub Date : 2024-03-21DOI: 10.1093/femsml/uqae003
Carlos E Martinez-Soto, Michael McClelland, A. M. Kropinski, Janet T. Lin, C. Khursigara, H. Anany
{"title":"Multi-receptor phage cocktail against Salmonella enterica to circumvent phage resistance","authors":"Carlos E Martinez-Soto, Michael McClelland, A. M. Kropinski, Janet T. Lin, C. Khursigara, H. Anany","doi":"10.1093/femsml/uqae003","DOIUrl":"https://doi.org/10.1093/femsml/uqae003","url":null,"abstract":"\u0000 Non-Typhoidal Salmonella (NTS) is one of the most common foodborne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multi-receptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22×10−6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 hours at 25 and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"191 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140222595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}