{"title":"Bayesian approach for design and analysis of medical device trials in the era of modern clinical studies","authors":"Han Cao, Chen Yao, Ying Yuan","doi":"10.1515/mr-2023-0026","DOIUrl":"https://doi.org/10.1515/mr-2023-0026","url":null,"abstract":"Abstract Medical device technology develops rapidly, and the life cycle of a medical device is much shorter than drugs. It is necessary to evaluate the safety and effectiveness of a medical device in a timely manner to keep up with technology flux. Bayesian methods provides an efficient approach to addressing this challenge. In this article, we review the characteristics of the Bayesian approach and some Bayesian designs that were commonly used in medical device regulatory setting, including Bayesian adaptive design, Bayesian diagnostic design, Bayesian multiregional design, and Bayesian label expansion study. We illustrate these designs with medical devices approved by the US Food and Drug Administration (FDA). We also review several innovative Bayesian information borrowing methods, and briefly discuss the challenges and future directions of the Bayesian application in medical device trials. Our objective is to promote the use of the Bayesian approach to accelerate the development of innovative medical devices and their accessibility to patients for effective disease diagnoses and treatments.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135739066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evidence-based rehabilitation medicine: definition, foundation, practice and development","authors":"Jinlong Zhang, Chengqi He","doi":"10.1515/mr-2023-0027","DOIUrl":"https://doi.org/10.1515/mr-2023-0027","url":null,"abstract":"Abstract To determine the definition, foundation, practice, and development of evidence-based rehabilitation medicine (EBRM) and point out the development direction for EBRM. Retrieve the database of PubMed, Cochrane Library, Embase, China national knowledge infrastructure (CNKI), Wanfang, and China science and technology journal database (CSTJ). The search was conducted from the establishment of the database to June 2023. The key words are “rehabilitation medicine and evidence based” in Chinese and English. After reading the abstract or full text of the literature, a summary analysis is conducted to determine the definition, foundation, practice, and development of EBRM. A total of 127 articles were included. The development of 14 sub majors in EBRM are not balanced, evidence-based musculoskeletal rehabilitation medicine (EBMRM) (31 articles, mainly focuses on osteoarthritis, osteoporosis and musculoskeletal pain), evidence-based neurorehabilitation medicine (EBNM) (34 articles, mainly concentrated in stroke, traumatic brain injury and spinal cord injury) and evidence-based education rehabilitation medicine (EBEDRM) (17 articles, mainly focuses on educational methodology), evidence-based nursing rehabilitation medicine (EBNRM) (2 articles), evidence-based engineering rehabilitation medicine (EBENRM) (7 articles), evidence-based traditional Chinese rehabilitation medicine (EBTCRM) (3 articles), evidence-based internal rehabilitation medicine (EBIRM) (11 articles), evidence-based intensive care rehabilitation medicine (EBICRM) (4 articles), evidence-based oncology rehabilitation medicine (EBORM) (6 articles), evidence-based physical therapy medicine (EBPTM) (3 articles), evidence-based cardiopulmonary rehabilitation medicine (EBCRM) (6 articles), evidence-based speech therapy medicine (EBSTM)/evidence-based occupation therapy medicine (EBOTM)/evidence-based geriatric rehabilitation medicine (EBGRM) (1 article). The EBMRM, EBNM and EBEDRM are relatively well developed. The development of EBNRM, EBENRM, EBTCRM, EBIRM, EBICRM, EBGRM, EBORM, EBCRM, EBPTM, EBSTM and EBOTM is relatively slow, indicating these eleven fields should be pay more attention in future.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135769830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The mTOR pathway in the antiphospholipid syndrome","authors":"Lanlan Ji, Zhuoli Zhang, Andras Perl","doi":"10.1515/mr-2023-0033","DOIUrl":"https://doi.org/10.1515/mr-2023-0033","url":null,"abstract":"Abstract This perspective discussed the available evidence on the involvement of mTOR pathway in antiphospholipid syndrome (APS), from the aspects of endothelial cells, platelets, monocytes and anti-phospholipid antibodies (PLs), which may lead to future therapeutic applications of mTOR inhibition in APS.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136236357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Iron oxide nanoparticles in magnetic drug targeting and ferroptosis-based cancer therapy","authors":"Quazi T. H. Shubhra","doi":"10.1515/mr-2023-0029","DOIUrl":"https://doi.org/10.1515/mr-2023-0029","url":null,"abstract":"Abstract Iron oxide (IO) nanoparticles (NPs) have gained significant attention in the field of biomedicine, particularly in drug targeting and cancer therapy. Their potential in magnetic drug targeting (MDT) and ferroptosis-based cancer therapy is highly promising. IO NPs serve as an effective drug delivery system (DDS), utilizing external magnetic fields (EMFs) to target cancer cells while minimizing damage to healthy organs. Additionally, IO NPs can generate reactive oxygen species (ROS) and induce ferroptosis, resulting in cytotoxic effects on cancer cells. This article explores how IO NPs can potentially revolutionize cancer research, focusing on their applications in MDT and ferroptosis-based therapy.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enrichment of nano delivery platforms for mRNA-based nanotherapeutics","authors":"Xiao Liu, Xu Zhang, Jiulong Li, Huan Meng","doi":"10.1515/mr-2023-0010","DOIUrl":"https://doi.org/10.1515/mr-2023-0010","url":null,"abstract":"Abstract Lipid-based nanoparticles (LNP) have shown significant progress in delivering mRNA for therapeutics, particularly with the success of coronavirus disease 2019 (COVID-19) vaccines. However, there are still challenges, such as organ-specific targeting, sustained protein expression, immunogenicity, and storage that need to be addressed. Therefore, there is interest in developing additional nano drug delivery systems (DDS) to complement LNP technology. Some of these include polymer, lipid-polymer hybrid, organic/inorganic hybrid nanostructure, and inorganic nanoparticle. In our opinion, LNP technology may not be suitable for every disease scenario in categories such as infection disease, cancer, pulmonary disease, autoimmune disorders and genetic rare disease (among others). This is because different diseases may require distinct administration routes, doses, and treatment durations, as well as considerations for biological barriers that may lower the efficacy and/or exert safety concern. In this perspective, we will highlight the need and potential for enhancing the diversity of nano delivery platforms for mRNA-based nanotherapeutics.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities","authors":"Jing Wang, Yuliang Zhao, Guangjun Nie","doi":"10.1515/mr-2023-0028","DOIUrl":"https://doi.org/10.1515/mr-2023-0028","url":null,"abstract":"Abstract Intelligent nanomedicine is currently one of the most active frontiers in cancer therapy development. Empowered by the recent progresses of nanobiotechnology, a new generation of multifunctional nanotherapeutics and imaging platforms has remarkably improved our capability to cope with the highly heterogeneous and complicated nature of cancer. With rationally designed multifunctionality and programmable assembly of functional subunits, the in vivo behaviors of intelligent nanosystems have become increasingly tunable, making them more efficient in performing sophisticated actions in physiological and pathological microenvironments. In recent years, intelligent nanomaterial-based theranostic platforms have showed great potential in tumor-targeted delivery, biological barrier circumvention, multi-responsive tumor sensing and drug release, as well as convergence with precise medication approaches such as personalized tumor vaccines. On the other hand, the increasing system complexity of anti-cancer nanomedicines also pose significant challenges in characterization, monitoring and clinical use, requesting a more comprehensive and dynamic understanding of nano-bio interactions. This review aims to briefly summarize the recent progresses achieved by intelligent nanomaterials in tumor-targeted drug delivery, tumor immunotherapy and temporospatially specific tumor imaging, as well as important advances of our knowledge on their interaction with biological systems. In the perspective of clinical translation, we have further discussed the major possibilities provided by disease-oriented development of anti-cancer nanomaterials, highlighting the critical importance clinically-oriented system design.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiyin Zhang, Yusheng Lin, Narayan S. Hosmane, Yinghuai Zhu
{"title":"Nanostructured boron agents for boron neutron capture therapy: a review of recent patents","authors":"Xiyin Zhang, Yusheng Lin, Narayan S. Hosmane, Yinghuai Zhu","doi":"10.1515/mr-2023-0013","DOIUrl":"https://doi.org/10.1515/mr-2023-0013","url":null,"abstract":"Abstract Boron neutron capture therapy (BNCT) is a potential radiation therapy modality for cancer, and tumor-targeted stable boron-10 ( 10 B) delivery agents are an important component of BNCT. Currently, two low-molecular-weight boron-containing compounds, sodium mercaptoundecahydro- closo -dodecaborate (BSH) and boronophenylalanine (BPA), are mainly used in BNCT. Although both have suboptimal tumor selectivity, they have shown some therapeutic benefit in patients with high-grade glioma and several other tumors. To improve the efficacy of BNCT, great efforts have been devoted for the development of new boron delivery agents with better uptake and favorable pharmacokinetic profiles. This article reviews the application and research progress of boron nanomaterials as boron carriers in boron neutron capture therapy and hopes to stimulate people’s interest in nanomaterial-based delivery agents by summarizing various kinds of boron nanomaterial patents disclosed in the past decade.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135353087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lipid-based nanoparticles for cancer immunotherapy.","authors":"Shumin Fan, Huize Han, Zhicheng Yan, Yao Lu, Bing He, Qiang Zhang","doi":"10.1515/mr-2023-0020","DOIUrl":"10.1515/mr-2023-0020","url":null,"abstract":"<p><p>As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient's own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"3 3","pages":"230-269"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/54/mr-3-3-mr-2023-0020.PMC10542882.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41164399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiqian Zha, Cuili Xue, Yanlei Liu, Jian Ni, Jesus M De La Fuente, Daxiang Cui
{"title":"Artificial intelligence in theranostics of gastric cancer, a review.","authors":"Yiqian Zha, Cuili Xue, Yanlei Liu, Jian Ni, Jesus M De La Fuente, Daxiang Cui","doi":"10.1515/mr-2022-0042","DOIUrl":"10.1515/mr-2022-0042","url":null,"abstract":"<p><p>Gastric cancer (GC) is one of the commonest cancers with high morbidity and mortality in the world. How to realize precise diagnosis and therapy of GC owns great clinical requirement. In recent years, artificial intelligence (AI) has been actively explored to apply to early diagnosis and treatment and prognosis of gastric carcinoma. Herein, we review recent advance of AI in early screening, diagnosis, therapy and prognosis of stomach carcinoma. Especially AI combined with breath screening early GC system improved 97.4 % of early GC diagnosis ratio, AI model on stomach cancer diagnosis system of saliva biomarkers obtained an overall accuracy of 97.18 %, specificity of 97.44 %, and sensitivity of 96.88 %. We also discuss concept, issues, approaches and challenges of AI applied in stomach cancer. This review provides a comprehensive view and roadmap for readers working in this field, with the aim of pushing application of AI in theranostics of stomach cancer to increase the early discovery ratio and curative ratio of GC patients.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"3 3","pages":"214-229"},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d2/ce/mr-3-3-mr-2022-0042.PMC10542883.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41172050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei He, Kai Liu, Zhiyuan Yang, Mark Hannink, Richard D Hammer, Mihail Popescu, Dong Xu
{"title":"Applications of cutting-edge artificial intelligence technologies in biomedical literature and document mining.","authors":"Fei He, Kai Liu, Zhiyuan Yang, Mark Hannink, Richard D Hammer, Mihail Popescu, Dong Xu","doi":"10.1515/mr-2023-0011","DOIUrl":"10.1515/mr-2023-0011","url":null,"abstract":"<p><p>The biomedical literature is a vast and invaluable resource for biomedical research. Integrating knowledge from the literature with biomedical data can help biological studies and the clinical decision-making process. Efforts have been made to gather information from the biomedical literature and create biomedical knowledge bases, such as KEGG and Reactome. However, manual curation remains the primary method to retrieve accurate biomedical entities and relationships. Manual curation becomes increasingly challenging and costly as the volume of biomedical publications quickly grows. Fortunately, recent advancements in Artificial Intelligence (AI) technologies offer the potential to automate the process of curating, updating, and integrating knowledge from the literature. Herein, we highlight the AI capabilities to aid in mining knowledge and building the knowledge base from the biomedical literature.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"3 3","pages":"200-204"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/25/mr-3-3-mr-2023-0011.PMC10542881.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41123814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}