化合物-蛋白质相互作用(CPI)预测的最新进展和挑战综述

Yanbei Li, Zhehuan Fan, Jingxin Rao, Zhiyi Chen, Qinyu Chu, Mingyue Zheng, Xutong Li
{"title":"化合物-蛋白质相互作用(CPI)预测的最新进展和挑战综述","authors":"Yanbei Li, Zhehuan Fan, Jingxin Rao, Zhiyi Chen, Qinyu Chu, Mingyue Zheng, Xutong Li","doi":"10.1515/mr-2023-0030","DOIUrl":null,"url":null,"abstract":"Abstract Compound-protein interactions (CPIs) are critical in drug discovery for identifying therapeutic targets, drug side effects, and repurposing existing drugs. Machine learning (ML) algorithms have emerged as powerful tools for CPI prediction, offering notable advantages in cost-effectiveness and efficiency. This review provides an overview of recent advances in both structure-based and non-structure-based CPI prediction ML models, highlighting their performance and achievements. It also offers insights into CPI prediction-related datasets and evaluation benchmarks. Lastly, the article presents a comprehensive assessment of the current landscape of CPI prediction, elucidating the challenges faced and outlining emerging trends to advance the field.","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of recent advances and challenges in predicting compound-protein interaction (CPI)\",\"authors\":\"Yanbei Li, Zhehuan Fan, Jingxin Rao, Zhiyi Chen, Qinyu Chu, Mingyue Zheng, Xutong Li\",\"doi\":\"10.1515/mr-2023-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Compound-protein interactions (CPIs) are critical in drug discovery for identifying therapeutic targets, drug side effects, and repurposing existing drugs. Machine learning (ML) algorithms have emerged as powerful tools for CPI prediction, offering notable advantages in cost-effectiveness and efficiency. This review provides an overview of recent advances in both structure-based and non-structure-based CPI prediction ML models, highlighting their performance and achievements. It also offers insights into CPI prediction-related datasets and evaluation benchmarks. Lastly, the article presents a comprehensive assessment of the current landscape of CPI prediction, elucidating the challenges faced and outlining emerging trends to advance the field.\",\"PeriodicalId\":74151,\"journal\":{\"name\":\"Medical review (Berlin, Germany)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical review (Berlin, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mr-2023-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical review (Berlin, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mr-2023-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化合物-蛋白质相互作用(CPIs)在药物发现中至关重要,可以确定治疗靶点、药物副作用和现有药物的再利用。机器学习(ML)算法已成为CPI预测的强大工具,在成本效益和效率方面具有显着优势。本文综述了基于结构和非基于结构的CPI预测ML模型的最新进展,重点介绍了它们的性能和成就。它还提供了对CPI预测相关数据集和评估基准的见解。最后,本文对CPI预测的现状进行了全面评估,阐明了所面临的挑战,并概述了推动该领域发展的新兴趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overview of recent advances and challenges in predicting compound-protein interaction (CPI)
Abstract Compound-protein interactions (CPIs) are critical in drug discovery for identifying therapeutic targets, drug side effects, and repurposing existing drugs. Machine learning (ML) algorithms have emerged as powerful tools for CPI prediction, offering notable advantages in cost-effectiveness and efficiency. This review provides an overview of recent advances in both structure-based and non-structure-based CPI prediction ML models, highlighting their performance and achievements. It also offers insights into CPI prediction-related datasets and evaluation benchmarks. Lastly, the article presents a comprehensive assessment of the current landscape of CPI prediction, elucidating the challenges faced and outlining emerging trends to advance the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信