Jie Dong, Zeye Liu, Jing Dong, Fang Fang, Fengwen Zhang, Xiangbin Pan
{"title":"Embracing a new era of echocardiography-guided percutaneous and non-fluoroscopical procedure for structure heart disease.","authors":"Jie Dong, Zeye Liu, Jing Dong, Fang Fang, Fengwen Zhang, Xiangbin Pan","doi":"10.1515/mr-2024-0101","DOIUrl":"https://doi.org/10.1515/mr-2024-0101","url":null,"abstract":"<p><p>The advancement of catheter-based interventional techniques represents a significant evolution in cardiovascular medicine. However, traditional methods that rely on fluoroscopic guidance present considerable limitations including radiation exposure and contrast agent-related risks and the heavy load-caused lead suits. In response, zero or low X-ray emerge, including percutaneous and non-fluoroscopical (PAN) procedure coming as a transformative solution, particularly in treating congenital heart disease, valvular disease, and arrhythmias. These methods minimize the risk of iatrogenic injuries associated with radiative procedures. Innovative PAN procedures and methodologies have been developed to enhance imaging, transcatheter interventions, safety, and accuracy, overcoming previous limitations. By eliminating radiation and expanding accessibility, PAN procedures offer a safe, effective, and economically viable alternative to traditional methods, ushering in a new era of minimally invasive cardiovascular treatment.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 2","pages":"174-176"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144037823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomedical applications of organoids in genetic diseases.","authors":"Wenhua Huang, Seogsong Jeong, Won Kim, Lei Chen","doi":"10.1515/mr-2024-0077","DOIUrl":"https://doi.org/10.1515/mr-2024-0077","url":null,"abstract":"<p><p>Organoid technology has significantly transformed biomedical research by providing exceptional prospects for modeling human tissues and disorders in a laboratory setting. It has significant potential for understanding the intricate relationship between genetic mutations, cellular phenotypes, and disease pathology, especially in the field of genetic diseases. The intersection of organoid technology and genetic research offers great promise for comprehending the pathophysiology of genetic diseases and creating innovative treatment approaches customized for specific patients. This review aimed to present a thorough analysis of the current advancements in organoid technology and its biomedical applications for genetic diseases. We examined techniques for modeling genetic disorders using organoid platforms, analyze the approaches for incorporating genetic disease organoids into clinical practice, and showcase current breakthroughs in preclinical application, individualized healthcare, and transplantation. Through the integration of knowledge from several disciplines, such as genetics, regenerative medicine, and biological engineering, our aim is to enhance our comprehension of the complex connection between genetic variations and organoid models in relation to human health and disease.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 2","pages":"152-163"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prevalence of fragile X syndrome in South Asia, and importance of diagnosis.","authors":"Aminath Fazna, Randi Jenssen Hagerman","doi":"10.1515/mr-2024-0060","DOIUrl":"https://doi.org/10.1515/mr-2024-0060","url":null,"abstract":"<p><p>Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the <i>FMR1</i> gene on the X chromosome, leading to a range of developmental and intellectual disabilities. FXS is characterized by intellectual disability, behavior challenges, and distinct physical features such as an elongated face, large ears, and hyperflexible joints; FXS remains the most common inherited cause of intellectual disability. Behavioral manifestations often include attention deficits, hyperactivity, anxiety, and features of autism spectrum disorder. The prevalence of FXS in the South Asian population is not well-documented, but existing studies suggest it may be comparable to global prevalence rates, which are approximately 1 in 4,000 males and 1 in 8,000 females. Accurate diagnosis of FXS in South Asians is crucial due to the implications for early intervention and treatment, which can significantly improve the quality of life and developmental outcomes for affected individuals. Early diagnosis also facilitates genetic counselling and family planning, helping to reduce the risk of recurrence in families. Increased awareness and screening in South Asian communities are essential to address the diagnostic gap and ensure timely support for individuals with FXS or disorders associated with the premutation of <i>FMR1.</i></p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 2","pages":"164-173"},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144054882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biofluid biomarkers for Alzheimer's disease: past, present, and future.","authors":"Chengyu An, Huimin Cai, Ziye Ren, Xiaofeng Fu, Shuiyue Quan, Longfei Jia","doi":"10.1515/mr-2023-0071","DOIUrl":"10.1515/mr-2023-0071","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with tremendous social and economic burden. Therefore, early and accurate diagnosis is imperative for effective treatment or prevention of the disease. Cerebrospinal fluid and blood biomarkers emerge as favorable diagnostic tools due to their relative accessibility and potential for widespread clinical use. This review focuses on the AT(N) biomarker system, which includes biomarkers reflecting AD core pathologies, amyloid deposition, and pathological tau, as well as neurodegeneration. Novel biomarkers associated with inflammation/immunity, synaptic dysfunction, vascular pathology, and α-synucleinopathy, which might contribute to either the pathogenesis or the clinical progression of AD, have also been discussed. Other emerging candidates including non-coding RNAs, metabolites, and extracellular vesicle-based markers have also enriched the biofluid biomarker landscape for AD. Moreover, the review discusses the current challenges of biofluid biomarkers in AD diagnosis and offers insights into the prospective future development.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"4 6","pages":"467-491"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A stepwise approach to deriving functional β-cells from human embryonic or induced pluripotent stem cells.","authors":"Clara Farhat, Viktoria Xega, Jun-Li Liu","doi":"10.1515/mr-2024-0039","DOIUrl":"10.1515/mr-2024-0039","url":null,"abstract":"<p><p>Our understanding of β-cell differentiation from pluripotent stem cells (PSCs) is rapidly evolving. Although progress has been made, challenges remain, particularly in achieving glucose-stimulated insulin secretion (GSIS). Human embryonic stem cells (hESCs) are valuable due to their pluripotent ability. A fixed protocol targeting master regulatory genes initiates stem cells into pancreatic lineage commitment. Due to the observations that a single stem cell can differentiate into multiple cell types depending on various factors and conditions, non-linear differentiation pathways exist. Co-expression of key factors remains essential for successful β-cell differentiation. The mature β-cell marker MAFA plays a critical role in maintaining the differentiation state and preventing dedifferentiation. Recapitulating pancreatic islet clustering enhances physiological responses, offering potential avenues for diabetes treatment. On the other hand, several enhanced differentiation protocols from induced pluripotent stem cells (iPSCs) have improved the functional insulin producing β-cells generated. These findings, with their potential to revolutionize diabetes treatment, highlight the complexity of β-cell differentiation and guide further advancements in regenerative medicine.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 1","pages":"23-34"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quazi T H Shubhra, Laiping Fang, A K M Moshiul Alam
{"title":"Precision phototherapy and imaging with aggregation-induced emission-based nanoparticles cloaked in macrophage membrane.","authors":"Quazi T H Shubhra, Laiping Fang, A K M Moshiul Alam","doi":"10.1515/mr-2024-0041","DOIUrl":"10.1515/mr-2024-0041","url":null,"abstract":"","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 1","pages":"83-85"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Yan, Yimeng Zhang, Jianxiong Liu, Binlong Chen, Yiguang Wang
{"title":"Emerging magic bullet: subcellular organelle-targeted cancer therapy.","authors":"Yue Yan, Yimeng Zhang, Jianxiong Liu, Binlong Chen, Yiguang Wang","doi":"10.1515/mr-2024-0044","DOIUrl":"https://doi.org/10.1515/mr-2024-0044","url":null,"abstract":"<p><p>The therapeutic efficacy of anticancer drugs heavily relies on their concentration and retention at the corresponding target site. Hence, merely increasing the cellular concentration of drugs is insufficient to achieve satisfactory therapeutic outcomes, especially for the drugs that target specific intracellular sites. This necessitates the implementation of more precise targeting strategies to overcome the limitations posed by diffusion distribution and nonspecific interactions within cells. Consequently, subcellular organelle-targeted cancer therapy, characterized by its exceptional precision, have emerged as a promising approach to eradicate cancer cells through the specific disruption of subcellular organelles. Owing to several advantages including minimized dosage and side effect, optimized efficacy, and reversal of multidrug resistance, subcellular organelle-targeted therapies have garnered significant research interest in recent years. In this review, we comprehensively summarize the distribution of drug targets, targeted delivery strategies at various levels, and sophisticated strategies for targeting specific subcellular organelles. Additionally, we highlight the significance of subcellular targeting in cancer therapy and present essential considerations for its clinical translation.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 2","pages":"117-138"},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144013784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic advances in neurodevelopmental disorders.","authors":"Shilin Gao, Chaoyi Shan, Rong Zhang, Tianyun Wang","doi":"10.1515/mr-2024-0040","DOIUrl":"https://doi.org/10.1515/mr-2024-0040","url":null,"abstract":"<p><p>Neurodevelopmental disorders (NDDs) are a group of highly heterogeneous diseases that affect children's social, cognitive, and emotional functioning. The etiology is complicated with genetic factors playing an important role. During the past decade, large-scale whole exome sequencing (WES) and whole genome sequencing (WGS) have vastly advanced the genetic findings of NDDs. Various forms of variants have been reported to contribute to NDDs, such as <i>de novo</i> mutations (DNMs), copy number variations (CNVs), rare inherited variants (RIVs), and common variation. By far, over 200 high-risk NDD genes have been identified, which are involved in biological processes including synaptic function, transcriptional and epigenetic regulation. In addition, monogenic, oligogenic, polygenetic, and omnigenic models have been proposed to explain the genetic architecture of NDDs. However, the majority of NDD patients still do not have a definitive genetic diagnosis. In the future, more types of risk factors, as well as noncoding variants, are await to be identified, and including their interplay mechanisms are key to resolving the etiology and heterogeneity of NDDs.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 2","pages":"139-151"},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}