{"title":"Biofluid biomarkers for Alzheimer's disease: past, present, and future.","authors":"Chengyu An, Huimin Cai, Ziye Ren, Xiaofeng Fu, Shuiyue Quan, Longfei Jia","doi":"10.1515/mr-2023-0071","DOIUrl":"10.1515/mr-2023-0071","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with tremendous social and economic burden. Therefore, early and accurate diagnosis is imperative for effective treatment or prevention of the disease. Cerebrospinal fluid and blood biomarkers emerge as favorable diagnostic tools due to their relative accessibility and potential for widespread clinical use. This review focuses on the AT(N) biomarker system, which includes biomarkers reflecting AD core pathologies, amyloid deposition, and pathological tau, as well as neurodegeneration. Novel biomarkers associated with inflammation/immunity, synaptic dysfunction, vascular pathology, and α-synucleinopathy, which might contribute to either the pathogenesis or the clinical progression of AD, have also been discussed. Other emerging candidates including non-coding RNAs, metabolites, and extracellular vesicle-based markers have also enriched the biofluid biomarker landscape for AD. Moreover, the review discusses the current challenges of biofluid biomarkers in AD diagnosis and offers insights into the prospective future development.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"4 6","pages":"467-491"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A stepwise approach to deriving functional β-cells from human embryonic or induced pluripotent stem cells.","authors":"Clara Farhat, Viktoria Xega, Jun-Li Liu","doi":"10.1515/mr-2024-0039","DOIUrl":"10.1515/mr-2024-0039","url":null,"abstract":"<p><p>Our understanding of β-cell differentiation from pluripotent stem cells (PSCs) is rapidly evolving. Although progress has been made, challenges remain, particularly in achieving glucose-stimulated insulin secretion (GSIS). Human embryonic stem cells (hESCs) are valuable due to their pluripotent ability. A fixed protocol targeting master regulatory genes initiates stem cells into pancreatic lineage commitment. Due to the observations that a single stem cell can differentiate into multiple cell types depending on various factors and conditions, non-linear differentiation pathways exist. Co-expression of key factors remains essential for successful β-cell differentiation. The mature β-cell marker MAFA plays a critical role in maintaining the differentiation state and preventing dedifferentiation. Recapitulating pancreatic islet clustering enhances physiological responses, offering potential avenues for diabetes treatment. On the other hand, several enhanced differentiation protocols from induced pluripotent stem cells (iPSCs) have improved the functional insulin producing β-cells generated. These findings, with their potential to revolutionize diabetes treatment, highlight the complexity of β-cell differentiation and guide further advancements in regenerative medicine.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 1","pages":"23-34"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quazi T H Shubhra, Laiping Fang, A K M Moshiul Alam
{"title":"Precision phototherapy and imaging with aggregation-induced emission-based nanoparticles cloaked in macrophage membrane.","authors":"Quazi T H Shubhra, Laiping Fang, A K M Moshiul Alam","doi":"10.1515/mr-2024-0041","DOIUrl":"10.1515/mr-2024-0041","url":null,"abstract":"","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 1","pages":"83-85"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenyan Zhou, Junxin Lin, David C Hay, Xudong Yao, Hongwei Ouyang
{"title":"Combining transcriptomic and metabolomic insights to guide the clinical application of adipose- and bone marrow-derived mesenchymal stem cells.","authors":"Wenyan Zhou, Junxin Lin, David C Hay, Xudong Yao, Hongwei Ouyang","doi":"10.1515/mr-2024-0056","DOIUrl":"10.1515/mr-2024-0056","url":null,"abstract":"<p><p>Adipose-derived mesenchymal stem cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) have shown great potential in clinical applications. However, the similarities and differences between these two cell types have not been fully elucidated. Recent advances in transcriptomic and metabolomic research have provided valuable insight into the characteristics and functions of ADSCs and BMSCs. In this perspective article, we review the key findings from these studies, including cellular heterogeneity as well as differences in metabolic and secretory properties. We discuss how these insights can help guide the selection of the most suitable cell source for the clinic, and the optimization of preconditioning strategies prior to clinical deployment. Furthermore, we analyze the current landscape of products and clinical trials involving ADSCs and BMSCs, highlighting their therapeutic potential. We propose that the integration of multi-omics datasets will be crucial for establishing a comprehensive understanding of ADSC and BMSC identity and potency, and the provision of quality-assured stem cell-derived products for the clinic.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 1","pages":"76-82"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redefining chronic mountain sickness: insights from high-altitude research and clinical experience.","authors":"Gustavo Zubieta-Calleja","doi":"10.1515/mr-2024-0036","DOIUrl":"10.1515/mr-2024-0036","url":null,"abstract":"<p><p>Chronic Mountain Sickness (CMS), characterized by increased red blood cells above average values traditionally attributed to chronic hypobaric hypoxia exposure, is being redefined in light of recent research and clinical experience. We propose a shift in perspective, viewing CMS not as a singular entity but as Poly-erythrocythemia (PEH), as the Hematocrit/Hemoglobin/Red Blood Cells (Ht/Hb/RBCs) increase constitutes a sign, not a disease reflecting a spectrum of oxygen transport alterations in multiple diseases in the chronic hypoxia environment in high-altitude populations. Drawing on over five decades of experience at the High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA) in Bolivia, we advocate for altitude-specific blood parameter norms and emphasize the importance of correct etiological diagnosis for effective management. This updated understanding not only aids in managing chronically hypoxemic patients at various altitudes but also offers valuable insights into global health challenges, including the recovery from COVID-19.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"5 1","pages":"44-65"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical force modulates inflammation and immunomodulation in periodontal ligament cells.","authors":"Jira Chansaenroj, Ravipha Suwittayarak, Hiroshi Egusa, Lakshman P Samaranayake, Thanaphum Osathanon","doi":"10.1515/mr-2024-0034","DOIUrl":"10.1515/mr-2024-0034","url":null,"abstract":"<p><p>Mechanical forces control a multitude of biological responses in various cells and tissues. The periodontal ligament, located between the tooth's root and alveolar bone, is a major tissue compartment that is incessantly subjected to such mechanical stimulation through either normal or abnormal oral functionality. It is now known that mechanical stimulation activates periodontal ligament stem cells (PDLSCs) to modulate periodontal immunity and regulate inflammation - a basic feature of periodontal disease that affects virtually every human during their lifetime. For instance, shear stress induces the expression of immunomodulatory-related gene, indoleamine 2,3-dioxygenase (IDO). IDO cleaves l-tryptophan, resulting in increased l-kynurenine levels that, in turn, further promote regulatory T-cell differentiation and inhibit T cell proliferation. These and other related data reinforce the notion that mechanical stimulation plays a crucial role in controlling inflammation and immunomodulation of periodontal tissues. Further investigations, however, are warranted to evaluate the immunomodulatory features of PDLSCs so as to understand the pathological basis of periodontal disease and translate these into clinical interventions.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"4 6","pages":"544-548"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new year, a renewed dedication: greetings from Medical Review.","authors":"Qimin Zhan, Zhengwei Xie","doi":"10.1515/mr-2024-0015","DOIUrl":"https://doi.org/10.1515/mr-2024-0015","url":null,"abstract":"","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"4 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ronghua Hong, Bingyu Li, Yunjun Bao, Lingyu Liu, Lingjing Jin
{"title":"Therapeutic robots for post-stroke rehabilitation.","authors":"Ronghua Hong, Bingyu Li, Yunjun Bao, Lingyu Liu, Lingjing Jin","doi":"10.1515/mr-2023-0054","DOIUrl":"10.1515/mr-2023-0054","url":null,"abstract":"<p><p>Stroke is a prevalent, severe, and disabling health-care issue on a global scale, inevitably leading to motor and cognitive deficits. It has become one of the most significant challenges in China, resulting in substantial social and economic burdens. In addition to the medication and surgical interventions during the acute phase, rehabilitation treatment plays a crucial role in stroke care. Robotic technology takes distinct advantages over traditional physical therapy, occupational therapy, and speech therapy, and is increasingly gaining popularity in post-stroke rehabilitation. The use of rehabilitation robots not only alleviates the workload of healthcare professionals but also enhances the prognosis for specific stroke patients. This review presents a concise overview of the application of therapeutic robots in post-stroke rehabilitation, with particular emphasis on the recovery of motor and cognitive function.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"4 1","pages":"55-67"},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}