Advances in protein chemistry and structural biology最新文献

筛选
英文 中文
Engineering immune response to regulate cardiovascular disease and cancer. 调节心血管疾病和癌症的免疫反应工程。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-03-11 DOI: 10.1016/bs.apcsb.2023.12.004
Diksha Rani, Smaranjot Kaur, Shahjahan, Joy Kumar Dey, Sanjay Kumar Dey
{"title":"Engineering immune response to regulate cardiovascular disease and cancer.","authors":"Diksha Rani, Smaranjot Kaur, Shahjahan, Joy Kumar Dey, Sanjay Kumar Dey","doi":"10.1016/bs.apcsb.2023.12.004","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.004","url":null,"abstract":"<p><p>Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"381-417"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotherapy guided precision medicine in solid tumors. 免疫疗法引导下的实体瘤精准医疗。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-04-06 DOI: 10.1016/bs.apcsb.2024.02.004
Sanjana Mehrotra, Manu Kupani, Jaismeen Kaur, Jashandeep Kaur, Rajeev Kumar Pandey
{"title":"Immunotherapy guided precision medicine in solid tumors.","authors":"Sanjana Mehrotra, Manu Kupani, Jaismeen Kaur, Jashandeep Kaur, Rajeev Kumar Pandey","doi":"10.1016/bs.apcsb.2024.02.004","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.02.004","url":null,"abstract":"<p><p>Cancer is no longer recognized as a single disease but a collection of diseases each with its defining characteristics and behavior. Even within the same cancer type, there can be substantial heterogeneity at the molecular level. Cancer cells often accumulate various genetic mutations and epigenetic alterations over time, leading to a coexistence of distinct subpopulations of cells within the tumor. This tumor heterogeneity arises not only due to clonal outgrowth of cells with genetic mutations, but also due to interactions of tumor cells with the tumor microenvironment (TME). The latter is a dynamic ecosystem that includes cancer cells, immune cells, fibroblasts, endothelial cells, stromal cells, blood vessels, and extracellular matrix components, tumor-associated macrophages and secreted molecules. The complex interplay between tumor heterogeneity and the TME makes it difficult to develop one-size-fits-all treatments and is often the cause of therapeutic failure and resistance in solid cancers. Technological advances in the post-genomic era have given us cues regarding spatial and temporal tumor heterogeneity. Armed with this knowledge, oncologists are trying to target the unique genomic, epigenetic, and molecular landscape in the tumor cell that causes its oncogenic transformation in a particular patient. This has ushered in the era of personalized precision medicine (PPM). Immunotherapy, on the other hand, involves leveraging the body's immune system to recognize and attack cancer cells and spare healthy cells from the damage induced by radiation and chemotherapy. Combining PPM and immunotherapy represents a paradigm shift in cancer treatment and has emerged as a promising treatment modality for several solid cancers. In this chapter, we summarise major types of cancer immunotherapy and discuss how they are being used for precision medicine in different solid tumors.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"249-292"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring structural engineering approach to formulate and characterize next-generation adjuvants. 探索结构工程方法,配制和表征下一代佐剂。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-03-07 DOI: 10.1016/bs.apcsb.2023.12.020
Aditi Rattan, Takhellambam Malemnganba, Sagar, Vijay Kumar Prajapati
{"title":"Exploring structural engineering approach to formulate and characterize next-generation adjuvants.","authors":"Aditi Rattan, Takhellambam Malemnganba, Sagar, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2023.12.020","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.020","url":null,"abstract":"<p><p>It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"59-90"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells. 免疫反应中的血小板和细胞间通信:与专业和非专业免疫细胞对话。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-04-04 DOI: 10.1016/bs.apcsb.2023.12.010
Puja Kumari, Abhishek Ramachandra Panigrahi, Pooja Yadav, Samir Kumar Beura, Sunil Kumar Singh
{"title":"Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells.","authors":"Puja Kumari, Abhishek Ramachandra Panigrahi, Pooja Yadav, Samir Kumar Beura, Sunil Kumar Singh","doi":"10.1016/bs.apcsb.2023.12.010","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.010","url":null,"abstract":"<p><p>Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"347-379"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment. 利用合成生物学进行 CAR T 细胞工程的最新进展:为下一代癌症治疗铺平道路。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-02-24 DOI: 10.1016/bs.apcsb.2024.02.003
Sangita Dey, Moodu Devender, Swati Rani, Rajan Kumar Pandey
{"title":"Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment.","authors":"Sangita Dey, Moodu Devender, Swati Rani, Rajan Kumar Pandey","doi":"10.1016/bs.apcsb.2024.02.003","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.02.003","url":null,"abstract":"<p><p>This book chapter highlights a comprehensive exploration of the transformative innovations in the field of cancer immunotherapy. CAR (Chimeric Antigen Receptor) T-cell therapy represents a groundbreaking approach to treat cancer by reprogramming a patient immune cells to recognize and destroy cancer cells. This chapter underscores the critical role of synthetic biology in enhancing the safety and effectiveness of CAR T-cell therapies. It begins by emphasizing the growing importance of personalized medicine in cancer treatment, emphasizing the shift from one-size-fits-all approaches to patient-specific solutions. Synthetic biology, a multidisciplinary field, has been instrumental in customizing CAR T-cell therapies, allowing for fine-tuned precision and minimizing unwanted side effects. The chapter highlights recent advances in gene editing, synthetic gene circuits, and molecular engineering, showcasing how these technologies are optimizing CAR T-cell function. In summary, this book chapter sheds light on the remarkable progress made in the development of CAR T-cell therapies using synthetic biology, providing hope for cancer patients and hinting at a future where highly personalized and effective cancer treatments are the norm.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"91-156"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unleashing the power of antibodies: Engineering for tomorrow's therapy. 释放抗体的力量:明日疗法工程
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-03-07 DOI: 10.1016/bs.apcsb.2023.12.009
Sagar, Malemnganba Takhellambam, Aditi Rattan, Vijay Kumar Prajapati
{"title":"Unleashing the power of antibodies: Engineering for tomorrow's therapy.","authors":"Sagar, Malemnganba Takhellambam, Aditi Rattan, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2023.12.009","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.009","url":null,"abstract":"<p><p>Antibodies play a crucial role in host defense against various diseases. Antibody engineering is a multidisciplinary field that seeks to improve the quality of life of humans. In the context of disease, antibodies are highly specialized proteins that form a critical line of defense against pathogens and the disease caused by them. These infections trigger the innate arm of immunity by presenting on antigen-presenting cells such as dendritic cells. This ultimately links to the adaptive arm, where antibody production and maturation occur against that particular antigen. Upon binding with their specific antigens, antibodies trigger various immune responses to eliminate pathogens in a process called complement-dependent cytotoxicity and phagocytosis of invading microorganisms by immune cells or induce antibody-dependent cellular cytotoxicity is done by antibodies. These engineered antibodies are being used for various purposes, such as therapeutics, diagnostics, and biotechnology research. Cutting-edge techniques that include hybridoma technology, transgenic mice, display techniques like phage, yeast and ribosome displays, and next-generation sequencing are ways to engineer antibodies and mass production for the use of humankind. Considering the importance of antibodies in protecting from a diverse array of pathogens, investing in research holds great promise to develop future therapeutic targets to combat various diseases.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"1-36"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. 功能展开组学:内在紊乱在蛋白质(多重)功能中的作用。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-11-22 DOI: 10.1016/bs.apcsb.2023.11.001
Vladimir N Uversky
{"title":"Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality.","authors":"Vladimir N Uversky","doi":"10.1016/bs.apcsb.2023.11.001","DOIUrl":"10.1016/bs.apcsb.2023.11.001","url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs), which are functional proteins without stable tertiary structure, and hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) constitute prominent parts of all proteomes collectively known as unfoldomes. IDPs/IDRs exist as highly dynamic structural ensembles of rapidly interconverting conformations and are characterized by the exceptional structural heterogeneity, where their different parts are (dis)ordered to different degree, and their overall structure represents a complex mosaic of foldons, inducible foldons, inducible morphing foldons, non-foldons, semifoldons, and even unfoldons. Despite their lack of unique 3D structures, IDPs/IDRs play crucial roles in the control of various biological processes and the regulation of different cellular pathways and are commonly involved in recognition and signaling, indicating that the disorder-based functional repertoire is complementary to the functions of ordered proteins. Furthermore, IDPs/IDRs are frequently multifunctional, and this multifunctionality is defined by their structural flexibility and heterogeneity. Intrinsic disorder phenomenon is at the roots of the structure-function continuum model, where the structure continuum is defined by the presence of differently (dis)ordered regions, and the function continuum arises from the ability of all these differently (dis)ordered parts to have different functions. In their everyday life, IDPs/IDRs utilize a broad spectrum of interaction mechanisms thereby acting as interaction specialists. They are crucial for the biogenesis of numerous proteinaceous membrane-less organelles driven by the liquid-liquid phase separation. This review introduces functional unfoldomics by representing some aspects of the intrinsic disorder-based functionality.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"179-210"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the effect of disease causing mutations in metal binding sites of human ARSA in metachromatic leukodystrophy. 探索变色性白质营养不良症中人类 ARSA 金属结合位点的致病突变的影响。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-06-25 DOI: 10.1016/bs.apcsb.2023.12.016
N Madhana Priya, N Sidharth Kumar, S Udhaya Kumar, G Mohanraj, R Magesh, Hatem Zayed, Karthick Vasudevan, George Priya Doss C
{"title":"Exploring the effect of disease causing mutations in metal binding sites of human ARSA in metachromatic leukodystrophy.","authors":"N Madhana Priya, N Sidharth Kumar, S Udhaya Kumar, G Mohanraj, R Magesh, Hatem Zayed, Karthick Vasudevan, George Priya Doss C","doi":"10.1016/bs.apcsb.2023.12.016","DOIUrl":"10.1016/bs.apcsb.2023.12.016","url":null,"abstract":"<p><p>The arylsulfatase A (ARSA) gene is observed to be deficient in patients with metachromatic leukodystrophy (MLD), a type of lysosomal storage disease. MLD is a severe neurodegenerative disorder characterized by an autosomal recessive inheritance pattern. This study aimed to map the most deleterious mutations at the metal binding sites of ARSA and the amino acids in proximity to the mutated positions. We utilized an array of computational tools, including PredictSNP, MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, SNAP, and ConSurf, to identify the most detrimental mutations potentially implicated in MLD collected from UniProt, ClinVar, and HGMD. Two mutations, D29N and D30H, as being extremely deleterious based on assessments of pathogenicity, conservation, biophysical characteristics, and stability analysis. The D29 and D30 are located at the metal-interacting regions of ARSA and found to undergo post-translational modification, specifically phosphorylation. Henceforth, the in-depth effect of metal binding upon mutation was examined using molecular dynamics simulations (MDS) before and after phosphorylation. The MDS results exhibited high deviation for the D29N and D30H mutations in comparison to the native, and the same was confirmed by significant residue fluctuation and reduced compactness. These structural alterations suggest that such mutations may influence protein functionality, offering potential avenues for personalized therapeutic and providing a basis for potential mutation-specific treatments for severe MLD patients.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"141 ","pages":"203-221"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A journey from omics to clinicomics in solid cancers: Success stories and challenges. 实体瘤从omics到clinicomics的历程:成功案例与挑战。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-02-21 DOI: 10.1016/bs.apcsb.2023.11.008
Sanjana Mehrotra, Sankalp Sharma, Rajeev Kumar Pandey
{"title":"A journey from omics to clinicomics in solid cancers: Success stories and challenges.","authors":"Sanjana Mehrotra, Sankalp Sharma, Rajeev Kumar Pandey","doi":"10.1016/bs.apcsb.2023.11.008","DOIUrl":"10.1016/bs.apcsb.2023.11.008","url":null,"abstract":"<p><p>The word 'cancer' encompasses a heterogenous group of distinct disease types characterized by a spectrum of pathological features, genetic alterations and response to therapies. According to the World Health Organization, cancer is the second leading cause of death worldwide, responsible for one in six deaths and hence imposes a significant burden on global healthcare systems. High-throughput omics technologies combined with advanced imaging tools, have revolutionized our ability to interrogate the molecular landscape of tumors and has provided unprecedented understanding of the disease. Yet, there is a gap between basic research discoveries and their translation into clinically meaningful therapies for improving patient care. To bridge this gap, there is a need to analyse the vast amounts of high dimensional datasets from multi-omics platforms. The integration of multi-omics data with clinical information like patient history, histological examination and imaging has led to the novel concept of clinicomics and may expedite the bench-to-bedside transition in cancer. The journey from omics to clinicomics has gained momentum with development of radiomics which involves extracting quantitative features from medical imaging data with the help of deep learning and artificial intelligence (AI) tools. These features capture detailed information about the tumor's shape, texture, intensity, and spatial distribution. Together, the related fields of multiomics, translational bioinformatics, radiomics and clinicomics may provide evidence-based recommendations tailored to the individual cancer patient's molecular profile and clinical characteristics. In this chapter, we summarize multiomics studies in solid cancers with a specific focus on breast cancer. We also review machine learning and AI based algorithms and their use in cancer diagnosis, subtyping, prognosis and predicting treatment resistance and relapse.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"139 ","pages":"89-139"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational resources and chemoinformatics for translational health research. 用于转化健康研究的计算资源和化学信息学。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-02-15 DOI: 10.1016/bs.apcsb.2023.11.003
Tripti Tripathi, Dev Bukhsh Singh, Timir Tripathi
{"title":"Computational resources and chemoinformatics for translational health research.","authors":"Tripti Tripathi, Dev Bukhsh Singh, Timir Tripathi","doi":"10.1016/bs.apcsb.2023.11.003","DOIUrl":"10.1016/bs.apcsb.2023.11.003","url":null,"abstract":"<p><p>The integration of computational resources and chemoinformatics has revolutionized translational health research. It has offered a powerful set of tools for accelerating drug discovery. This chapter overviews the computational resources and chemoinformatics methods used in translational health research. The resources and methods can be used to analyze large datasets, identify potential drug candidates, predict drug-target interactions, and optimize treatment regimens. These resources have the potential to transform the drug discovery process and foster personalized medicine research. We discuss insights into their various applications in translational health and emphasize the need for addressing challenges, promoting collaboration, and advancing the field to fully realize the potential of these tools in transforming healthcare.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"139 ","pages":"27-55"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信