Soumik Das, Harini Ravi, Achsha Babu, Manosi Banerjee, R Kanagavalli, Sivaraman Dhanasekaran, V Devi Rajeswari, Ganesh Venkatraman, Gnanasambandan Ramanathan
{"title":"葡萄糖依赖性促胰岛素多肽 (GIP) 在 T2DM 中的治疗潜力:过去、现在和未来。","authors":"Soumik Das, Harini Ravi, Achsha Babu, Manosi Banerjee, R Kanagavalli, Sivaraman Dhanasekaran, V Devi Rajeswari, Ganesh Venkatraman, Gnanasambandan Ramanathan","doi":"10.1016/bs.apcsb.2023.12.017","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is a worldwide health problem that has raised major concerns to the public health community. This chronic condition typically results from the cell's inability to respond to normal insulin levels. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the primary incretin hormones secreted from the intestinal tract. While clinical research has extensively explored the therapeutic potential of GLP-1R in addressing various T2DM-related abnormalities, the possibility of GIPR playing an important role in T2DM treatment is still under investigation. Evidence suggests that GIP is involved in the pathophysiology of T2DM. This chapter focuses on examining the role of GIP as a therapeutic molecule in combating T2DM, comparing the past, present, and future scenarios. Our goal is to delve into how GIP may impact pancreatic β-cell function, adipose tissue uptake, and lipid metabolism. Furthermore, we will elucidate the mechanistic functions of GIP and its receptors in relation to other clinical conditions like cardiovascular diseases, non-alcoholic fatty liver diseases, neurodegenerative diseases, and renal disorders. Additionally, this chapter will shed light on the latest advancements in pharmacological management for T2DM, highlighting potential structural modifications of GIP and the repurposing of drugs, while also addressing the challenges involved in bringing GIP-based treatments into clinical practice.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic potentials of glucose-dependent insulinotropic polypeptide (GIP) in T2DM: Past, present, and future.\",\"authors\":\"Soumik Das, Harini Ravi, Achsha Babu, Manosi Banerjee, R Kanagavalli, Sivaraman Dhanasekaran, V Devi Rajeswari, Ganesh Venkatraman, Gnanasambandan Ramanathan\",\"doi\":\"10.1016/bs.apcsb.2023.12.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes mellitus (T2DM) is a worldwide health problem that has raised major concerns to the public health community. This chronic condition typically results from the cell's inability to respond to normal insulin levels. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the primary incretin hormones secreted from the intestinal tract. While clinical research has extensively explored the therapeutic potential of GLP-1R in addressing various T2DM-related abnormalities, the possibility of GIPR playing an important role in T2DM treatment is still under investigation. Evidence suggests that GIP is involved in the pathophysiology of T2DM. This chapter focuses on examining the role of GIP as a therapeutic molecule in combating T2DM, comparing the past, present, and future scenarios. Our goal is to delve into how GIP may impact pancreatic β-cell function, adipose tissue uptake, and lipid metabolism. Furthermore, we will elucidate the mechanistic functions of GIP and its receptors in relation to other clinical conditions like cardiovascular diseases, non-alcoholic fatty liver diseases, neurodegenerative diseases, and renal disorders. Additionally, this chapter will shed light on the latest advancements in pharmacological management for T2DM, highlighting potential structural modifications of GIP and the repurposing of drugs, while also addressing the challenges involved in bringing GIP-based treatments into clinical practice.</p>\",\"PeriodicalId\":7376,\"journal\":{\"name\":\"Advances in protein chemistry and structural biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in protein chemistry and structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apcsb.2023.12.017\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.12.017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Therapeutic potentials of glucose-dependent insulinotropic polypeptide (GIP) in T2DM: Past, present, and future.
Type 2 diabetes mellitus (T2DM) is a worldwide health problem that has raised major concerns to the public health community. This chronic condition typically results from the cell's inability to respond to normal insulin levels. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the primary incretin hormones secreted from the intestinal tract. While clinical research has extensively explored the therapeutic potential of GLP-1R in addressing various T2DM-related abnormalities, the possibility of GIPR playing an important role in T2DM treatment is still under investigation. Evidence suggests that GIP is involved in the pathophysiology of T2DM. This chapter focuses on examining the role of GIP as a therapeutic molecule in combating T2DM, comparing the past, present, and future scenarios. Our goal is to delve into how GIP may impact pancreatic β-cell function, adipose tissue uptake, and lipid metabolism. Furthermore, we will elucidate the mechanistic functions of GIP and its receptors in relation to other clinical conditions like cardiovascular diseases, non-alcoholic fatty liver diseases, neurodegenerative diseases, and renal disorders. Additionally, this chapter will shed light on the latest advancements in pharmacological management for T2DM, highlighting potential structural modifications of GIP and the repurposing of drugs, while also addressing the challenges involved in bringing GIP-based treatments into clinical practice.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.