Nachammai Kathiresan, Chandrabose Selvaraj, Sangavi Pandian, Gowtham Kumar Subbaraj, Abdulaziz S Alothaim, Sher Zaman Safi, Langeswaran Kulathaivel
{"title":"Proteomics and genomics insights on malignant osteosarcoma.","authors":"Nachammai Kathiresan, Chandrabose Selvaraj, Sangavi Pandian, Gowtham Kumar Subbaraj, Abdulaziz S Alothaim, Sher Zaman Safi, Langeswaran Kulathaivel","doi":"10.1016/bs.apcsb.2023.06.001","DOIUrl":"10.1016/bs.apcsb.2023.06.001","url":null,"abstract":"<p><p>Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-β, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Technological advancements in viral vector designing and optimization for therapeutic applications.","authors":"Satyendra Singh, Anurag Kumar Pandey, Takhellambam Malemnganba, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2023.11.013","DOIUrl":"10.1016/bs.apcsb.2023.11.013","url":null,"abstract":"<p><p>Viral vector engineering is critical to the advancement of several sectors of biotechnology, gene therapy, and vaccine development. These vectors were produced from viruses, were employed to deliver therapeutic genes or to alter biological processes. The potential for viral vectors to improve the precision, safety, and efficiency of therapeutic interventions has boosted their demand. The dynamic interplay between technological advancements and computational tools in establishing the landscape of viral vector engineering and vector optimization for therapeutic reasons is discussed in this chapter. It also emphasizes the importance of in silico techniques in maximizing vector potential for therapeutics and many phases of viral vector engineering, from genomic analysis to computer modelling and advancements to improve precise gene delivery. High-throughput screening propels the expedited process of vector selection, and computational techniques to analyze complex omics data to further enhance vector capabilities have been discussed. As in silico models reveal insights into off-target effects and integration sites, vector safety (biodistribution and toxicity) remains a crucial part and bridges the gap between preclinical and clinical investigations. Despite the limitations, this chapter depicts a future in which technology and computing merge to catapult viral vector therapy into an era of boundless possibilities.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections.","authors":"Dileep Francis, Gopika Veeramanickathadathil Hari, Abhijith Koonthanmala Subash, Anusha Bhairaddy, Atheene Joy","doi":"10.1016/bs.apcsb.2023.08.002","DOIUrl":"10.1016/bs.apcsb.2023.08.002","url":null,"abstract":"<p><p>Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harini Ravi, Soumik Das, V Devi Rajeswari, Ganesh Venkatraman, Abbas Alam Choudhury, Shreya Chakraborty, Gnanasambandan Ramanathan
{"title":"Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits.","authors":"Harini Ravi, Soumik Das, V Devi Rajeswari, Ganesh Venkatraman, Abbas Alam Choudhury, Shreya Chakraborty, Gnanasambandan Ramanathan","doi":"10.1016/bs.apcsb.2023.12.015","DOIUrl":"10.1016/bs.apcsb.2023.12.015","url":null,"abstract":"<p><p>Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Małgorzata Grzesiak, Monika Herian, Kinga Kamińska, Paula Ajersch
{"title":"Insight into vitamin D<sub>3</sub> action within the ovary-Basic and clinical aspects.","authors":"Małgorzata Grzesiak, Monika Herian, Kinga Kamińska, Paula Ajersch","doi":"10.1016/bs.apcsb.2024.04.003","DOIUrl":"10.1016/bs.apcsb.2024.04.003","url":null,"abstract":"<p><p>Vitamin D<sub>3</sub> is a fat-soluble secosteroid predominantly synthesized in the skin or delivered with a diet. Nevertheless, recently it is considered more as a hormone than a vitamin due to its pleiotropic function within the organism ensured by widely distributed vitamin D receptors and metabolic enzymes. Besides the main role in calcium and phosphorus homeostasis, vitamin D<sub>3</sub> was shown to regulate many cellular and metabolic processes in normal and cancerous tissues within the immune system, the cardiovascular system, the respiratory system and the endocrine system. The ovary is an important extraskeletal tissue of vitamin D<sub>3</sub> action and local metabolism, indicating its role in the regulation of ovarian functions upon physiological and pathological conditions. This chapter reviews firstly the updated information about vitamin D<sub>3</sub> metabolism and triggered intracellular pathways. Furthermore, the basic information about ovarian physiology and several aspects of vitamin D<sub>3</sub> effects within the ovary are presented. Finally, the special attention is paid into possible mechanism of vitamin D<sub>3</sub> action within ovarian pathologies such as premature ovarian failure, polycystic ovary syndrome, and ovarian cancer, considering its clinical application as alternative therapy.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thyroid hormone biosynthesis and its role in brain development and maintenance.","authors":"Janaina Sena de Souza","doi":"10.1016/bs.apcsb.2023.12.024","DOIUrl":"10.1016/bs.apcsb.2023.12.024","url":null,"abstract":"<p><p>Thyroid hormones are critical modulators in the physiological processes necessary to virtually all tissues, with exceptionally fundamental roles in brain development and maintenance. These hormones regulate essential neurodevelopment events, including neuronal migration, synaptogenesis, and myelination. Additionally, thyroid hormones are crucial for maintaining brain homeostasis and cognitive function in adulthood. This chapter aims to offer a comprehensive understanding of thyroid hormone biosynthesis and its intricate role in brain physiology. Here, we described the mechanisms underlying the biosynthesis of thyroid hormones, their influence on various aspects of brain development and ongoing maintenance, and the proteins in the brain that are responsive to these hormones. This chapter was geared towards broadening our understanding of thyroid hormone action in the brain, shedding light on potential therapeutic targets for neurodevelopmental and neurodegenerative disorders.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santhosh M E, Prasanna Kumar Selvam, Mohanraj Gopikrishnan, Karthick Vasudevan, Hatem Zayed, Magesh Ramasamy, Charles Emmanuel Jebaraj Walter, George Priya Doss C
{"title":"Transcriptomic analysis reveals zinc-mediated virulence and pathogenicity in multidrug-resistant Acinetobacter baumannii.","authors":"Santhosh M E, Prasanna Kumar Selvam, Mohanraj Gopikrishnan, Karthick Vasudevan, Hatem Zayed, Magesh Ramasamy, Charles Emmanuel Jebaraj Walter, George Priya Doss C","doi":"10.1016/bs.apcsb.2023.12.018","DOIUrl":"10.1016/bs.apcsb.2023.12.018","url":null,"abstract":"<p><p>Acinetobacter baumannii is a gram-negative bacterium well known for its multidrug resistance and connection to nosocomial infections under ESKAPE pathogens. This opportunistic pathogen is ubiquitously associated with nosocomial infections, posing significant threats within healthcare environments. Its critical clinical symptoms, namely, meningitis, urinary tract infections, bloodstream infections, ventilator-associated pneumonia, and pneumonia, catalyze the imperative demand for innovative therapeutic interventions. The proposed research focuses on delineating the role of Zinc, a crucial metallo-binding protein and micronutrient integral to bacterial metabolism and virulence, to enhance understanding of the pathogenicity of A. baumannii. RNA sequencing and subsequent DESeq2 analytical methods were used to identify differential gene expressions influenced by zinc exposure. Exploiting the STRING database for functional enrichment analysis has demonstrated the complex molecular mechanisms underlying the enhancement of pathogenicity prompted by Zinc. Moreover, hub genes like gltB, ribD, AIL77834.1, sdhB, nuoI, acsA_1, acoC, accA, accD were predicted using the cytohubba tool in Cytoscape. This investigation underscores the pivotal role of Zinc in the virulence of A. baumannii elucidates the underlying molecular pathways responsible for its pathogenicity. The research further accentuates the need for innovative therapeutic strategies to combat A. baumannii infections, particularly those induced by multidrug-resistant strains.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The mechanistic insights into different aspects of promiscuity in metalloenzymes.","authors":"Ankita Tripathi, Kshatresh Dutta Dubey","doi":"10.1016/bs.apcsb.2023.12.022","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.022","url":null,"abstract":"<p><p>Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gut microbial metalloproteins and its role in xenobiotics degradation and ROS scavenging.","authors":"Shreya Vishwas Mohite, Krishna Kant Sharma","doi":"10.1016/bs.apcsb.2024.03.004","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.03.004","url":null,"abstract":"<p><p>The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-β-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the \"directed evolution\" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edoardo Abeni, Cinzia Cocola, Stefania Croci, Valentina Martino, Eleonora Piscitelli, Roberta Gualtierotti, Paride Pelucchi, Valeria Tria, Giovanni Porta, Fabian Troschel, Burkhard Greve, Giovanni Nano, Alexey Tomilin, James Kehler, Daniela Gerovska, Daniela Mazzaccaro, Martin Götte, Marcos J Arauzo-Bravo, Salvarani Carlo, Ileana Zucchi, Rolland Reinbold
{"title":"Single-cell transcriptomic analysis to identify endomembrane regulation of metalloproteins and motor proteins in autoimmunity.","authors":"Edoardo Abeni, Cinzia Cocola, Stefania Croci, Valentina Martino, Eleonora Piscitelli, Roberta Gualtierotti, Paride Pelucchi, Valeria Tria, Giovanni Porta, Fabian Troschel, Burkhard Greve, Giovanni Nano, Alexey Tomilin, James Kehler, Daniela Gerovska, Daniela Mazzaccaro, Martin Götte, Marcos J Arauzo-Bravo, Salvarani Carlo, Ileana Zucchi, Rolland Reinbold","doi":"10.1016/bs.apcsb.2024.03.007","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.03.007","url":null,"abstract":"<p><p>TMEM230 promotes antigen processing, trafficking, and presentation by regulating the endomembrane system of membrane bound organelles (lysosomes, proteosomes and mitochondria) and phagosomes. Activation of the immune system requires trafficking of various cargos between the endomembrane system and cell plasma membrane. The Golgi apparatus is the hub of the endomembrane system and essential for the generation, maintenance, recycling, and trafficking of the components of the endomembrane system itself and immune system. Intracellular trafficking and secretion of immune system components depend on mitochondrial metalloproteins for ATP synthesis that powers motor protein transport of endomembrane cargo. Glycan modifying enzyme genes and motor proteins are essential for the activation of the immune system and trafficking of antigens between the endomembrane system and the plasma membrane. Recently, TMEM230 was identified as co-regulated with RNASET2 in lysosomes and with metalloproteins in various cell types and organelles, including mitochondria in autoimmune diseases. Aberrant metalloproteinase secretion by motor proteins is a major contributor to tissue remodeling of synovial membrane and joint tissue destruction in rheumatoid arthritis (RA) by promoting infiltration of blood vessels, bone erosion, and loss of cartilage by phagocytes. In this study, we identified that specific glycan processing enzymes are upregulated in certain cell types (fibroblast or endothelial cells) that function in destructive tissue remodeling in rheumatoid arthritis compared to osteoarthritis (OA). TMEM230 was identified as a regulator in the secretion of metaloproteinases and heparanase necessary tissue remodeling in OA and RA. In dendritic (DC), natural killer and T cells, TMEM230 was expressed at low or no levels in RA compared to OA. TMEM230 expression in DC likely is necessary for regulatory or helper T cells to maintain tolerance to self-antigens and prevent susceptibility to autoimmune disease. To identify how TMEM230 and the endomembrane system contribute to autoimmunity we investigated, glycan modifying enzymes, metalloproteinases and motor protein genes co-regulated with or regulated by TMEM230 in synovial tissue by analyzing published single cell transcriptomic datasets from RA patient derived synovial tissue.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}