{"title":"蛋白质组在确定蛋白质-蛋白质相互作用方面的应用。","authors":"Benjamin T Veenstra, Timothy D Veenstra","doi":"10.1016/bs.apcsb.2023.04.001","DOIUrl":null,"url":null,"abstract":"<p><p>There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"1-48"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic applications in identifying protein-protein interactions.\",\"authors\":\"Benjamin T Veenstra, Timothy D Veenstra\",\"doi\":\"10.1016/bs.apcsb.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.</p>\",\"PeriodicalId\":7376,\"journal\":{\"name\":\"Advances in protein chemistry and structural biology\",\"volume\":\"138 \",\"pages\":\"1-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in protein chemistry and structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apcsb.2023.04.001\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.04.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Proteomic applications in identifying protein-protein interactions.
There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.