Intelligence-based medicine最新文献

筛选
英文 中文
Leveraging Conv-XGBoost algorithm for perceived mental stress detection using Photoplethysmography 利用卷积- xgboost算法利用光电容积脉搏波检测感知精神压力
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100209
Geethu S. Kumar, B. Ankayarkanni
{"title":"Leveraging Conv-XGBoost algorithm for perceived mental stress detection using Photoplethysmography","authors":"Geethu S. Kumar,&nbsp;B. Ankayarkanni","doi":"10.1016/j.ibmed.2025.100209","DOIUrl":"10.1016/j.ibmed.2025.100209","url":null,"abstract":"<div><div>Stress detection is crucial for monitoring mental health and preventing stress-related disorders. Real-time stress detection shows promise with photoplethysmography (PPG), a non-invasive optical technology that analyzes blood volume changes in the microvascular bed of tissue. This study introduces a novel hybrid model, Conv-XGBoost, which combines Convolutional Neural Networks (CNN) and eXtreme Gradient Boosting (XGBoost) to improve the accuracy and robustness of stress detection from PPG signals. The Conv-XGBoost model utilizes the feature extraction capabilities of CNNs to process PPG signals, converting them into spectrograms that capture the time–frequency characteristics of data. The XGBoost component is essential for handling the complex, high-dimensional feature sets provided by the CNN, enhancing prediction capabilities through gradient boosting. This customized approach addresses the limitations of traditional machine learning algorithms in dealing with hand-crafted features. The Pulse Rate Variability-based Photoplethysmography dataset was chosen for training and validation. The outcomes of the experiments revealed that the proposed Conv-XGBoost model outperformed more conventional machine learning techniques with a training accuracy of 98.87%, validation accuracy of 93.28% and an F1-score of 97.25%. Additionally, the model demonstrated superior resilience to noise and variability in PPG signals, common in real-world scenarios. This study underscores how hybrid models can improve stress detection and sets the stage for future research integrating physiological signals with advanced deep learning techniques.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100209"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intelligent ensemble EfficientNet prediction system for interpretations of cardiac magnetic resonance images in heart failure severity diagnosis 用于心衰严重程度诊断的心脏磁共振图像解释的智能集成effentnet预测系统
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100218
Muthunayagam Muthulakshmi , Kotteswaran Venkatesan , Balaji Prasanalakshmi , Rahayu Syarifah Bahiyah , Vijayakumar Divya
{"title":"An intelligent ensemble EfficientNet prediction system for interpretations of cardiac magnetic resonance images in heart failure severity diagnosis","authors":"Muthunayagam Muthulakshmi ,&nbsp;Kotteswaran Venkatesan ,&nbsp;Balaji Prasanalakshmi ,&nbsp;Rahayu Syarifah Bahiyah ,&nbsp;Vijayakumar Divya","doi":"10.1016/j.ibmed.2025.100218","DOIUrl":"10.1016/j.ibmed.2025.100218","url":null,"abstract":"<div><div>Ensemble models as part of federated learning leverage the ability of individual models to learn unique patterns from the training dataset to make more efficient predictions than single predicting systems. This study aggregates the output of four best-performing EfficientNet models to arrive at the final heart failure severity prediction through federated learning. The seven variants of EfficientNet models (B0-B7) learn the features from the cardiac magnetic resonance images that are most relevant to heart failure severity. Further, the performance of every model variant has been analysed with three different optimizers i.e. Adam, SGD, and RMSprop. It has been observed that the developed ensemble prediction system provides an improved overall testing accuracy of 0.95. It is also worthy to note that the ensemble prediction has yielded significant improvement in the prediction of individual classes which is evident from sensitivity measure of 0.95, 0.88, 1.00, 0.93, and 0.98 for hyperdynamic, mild, moderate, normal and severe classes respectively. It is obvious from these results that the proposed ensemble EfficientNet prediction system would assist the radiologist in better interpretation of cardiac magnetic resonance images. This in turn would benefit the cardiologist in understanding the HF progress and planning effective therapeutic intervention.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100218"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing machine learning approaches for predicting the success of ICSI treatment: A study on clinical applications 比较预测ICSI治疗成功的机器学习方法:临床应用研究
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100204
Abrar Mohammad , Haneen Awad , Huthaifa I. Ashqar
{"title":"Comparing machine learning approaches for predicting the success of ICSI treatment: A study on clinical applications","authors":"Abrar Mohammad ,&nbsp;Haneen Awad ,&nbsp;Huthaifa I. Ashqar","doi":"10.1016/j.ibmed.2025.100204","DOIUrl":"10.1016/j.ibmed.2025.100204","url":null,"abstract":"<div><div>Intracytoplasmic Sperm Injection (ICSI) is widely used to treat almost all forms of male infertility and to overcome fertilization failure. While ICSI is a powerful procedure, it's also considered quite expensive, which means couples and clinicians have to make informed decisions about whether or not to proceed with this treatment. About 10,036 patient records, 46 attribute sets, and one label column that indicates the success or failure of pregnancy after the ICSI treatment were used to conduct this research. The data were gathered from Razan infertility center in Palestine. The ICSI dataset contains only clinical features that are known prior to deciding on ICSI treatment. The dataset contains 46 features, 5 of the independent features have categorical values, 12 are numerical, 3 are string, and 26 are binary. Based on the results, RF algorithm achieved the highest AUC score of 0.97, followed by the NN with a score of 0.95, and the RIMARC algorithm with a score of 0.92. AUC is a widely used metric for evaluating the performance of binary classification models. Therefore, judging by the AUC scores, it appears that RF algorithm outperformed the other two algorithms in terms of the evaluated metric. The method employed in our analysis demonstrates considerable promise, practicality, and generalizability, driving advancements in fertility treatments and ultimately improving the chances of couples achieving their desired family goals.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100204"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning approach in predicting early antenatal care initiation at first trimester among reproductive women in Somalia: an analysis with SHAP explanations 预测索马里育龄妇女妊娠早期产前护理的机器学习方法:基于SHAP解释的分析
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100252
Jamilu Sani , Mohamed Mustaf Ahmed
{"title":"Machine learning approach in predicting early antenatal care initiation at first trimester among reproductive women in Somalia: an analysis with SHAP explanations","authors":"Jamilu Sani ,&nbsp;Mohamed Mustaf Ahmed","doi":"10.1016/j.ibmed.2025.100252","DOIUrl":"10.1016/j.ibmed.2025.100252","url":null,"abstract":"<div><h3>Introduction</h3><div>Timely antenatal care (ANC) initiation is essential for maternal and neonatal health, enabling the early detection of risks and ensuring optimal care. In Somalia, delayed initiation of ANC poses a significant health risk. This study applied machine learning (ML) models to predict early ANC initiation among Somali women and identify key predictors using SHapley Additive exPlanations (SHAP).</div></div><div><h3>Methods</h3><div>Data from the 2020 Somali Health and Demographic Survey were analyzed, focusing on ANC timing in 3138 women aged 15–49. Six ML models (Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, K-Nearest Neighbors, and XGBoost) were assessed for accuracy, precision, recall, F1-score, and AUROC. Feature importance was evaluated using SHAP to interpret the influence of each predictor.</div></div><div><h3>Results</h3><div>Random Forest achieved the highest performance, with an accuracy of 70 %, precision of 0.69, recall of 0.71, and AUROC of 0.74, closely followed by XGBoost, which achieved an accuracy of 69 % and AUROC of 0.72. SHAP analysis identified the place of delivery, residence, and age group as the most influential predictors of early ANC initiation, with the number of births in the past five years showing a significant negative impact.</div></div><div><h3>Conclusion</h3><div>Machine learning models, particularly Random Forest and XGBoost, effectively predicted early ANC initiation, highlighting significant demographic and healthcare access-related predictors. These findings suggest targeted interventions focusing on delivery location preferences, residential factors, and age-specific approaches to improve early ANC attendance in Somalia.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100252"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143877377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BreastCare application: Moroccan Breast cancer diagnosis through deep learning-based image segmentation and classification
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100254
Nouhaila Erragzi , Nabila Zrira , Safae Lanjeri , Youssef Omor , Anwar Jimi , Ibtissam Benmiloud , Rajaa Sebihi , Rachida Latib , Nabil Ngote , Haris Ahmad Khan , Shah Nawaz
{"title":"BreastCare application: Moroccan Breast cancer diagnosis through deep learning-based image segmentation and classification","authors":"Nouhaila Erragzi ,&nbsp;Nabila Zrira ,&nbsp;Safae Lanjeri ,&nbsp;Youssef Omor ,&nbsp;Anwar Jimi ,&nbsp;Ibtissam Benmiloud ,&nbsp;Rajaa Sebihi ,&nbsp;Rachida Latib ,&nbsp;Nabil Ngote ,&nbsp;Haris Ahmad Khan ,&nbsp;Shah Nawaz","doi":"10.1016/j.ibmed.2025.100254","DOIUrl":"10.1016/j.ibmed.2025.100254","url":null,"abstract":"<div><div>Breast cancer remains a critical health problem worldwide. Increasing survival rates requires early detection. Accurate classification and segmentation are crucial for effective diagnosis and treatment. Although breast imaging modalities offer many advantages for the diagnosis of breast cancer, the interpretation of breast ultrasound images has always been a vital issue for physicians and radiologists due to misdiagnosis. Moreover, detecting cancer at an early stage increases the chances of survival. This article presents two approaches: Attention-DenseUNet for the segmentation task and EfficientNetB7 for the classification task using public datasets: BUSI, UDIAT, BUSC, BUSIS, and STUHospital. These models are proposed in the context of Computer-Aided Diagnosis (CAD) for breast cancer detection. In the first study, we obtained an impressive Dice coefficient for all datasets, with scores of 88.93%, 95.35%, 92.79%, 93.29%, and 94.24%, respectively. In the classification task, we achieved a high accuracy using only four public datasets that include the two classes benign and malignant: BUSI, UDIAT, BUSC, and BUSIS, with an accuracy of 97%, 100%, 99%, and 94%, respectively. Generally, the results show that our proposed methods are considerably better than other state-of-the-art methods, which will undoubtedly help improve cancer diagnosis and reduce the number of false positives. Finally, we used the suggested approaches to create “Moroccan BreastCare”, an advanced breast cancer segmentation and classification software that automatically processes, segments, and classifies breast ultrasound images.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100254"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143943162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting the prevalence of cardiovascular diseases using machine learning algorithms 使用机器学习算法预测心血管疾病的患病率
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100199
Bernada E. Sianga , Maurice C. Mbago , Amina S. Msengwa
{"title":"Predicting the prevalence of cardiovascular diseases using machine learning algorithms","authors":"Bernada E. Sianga ,&nbsp;Maurice C. Mbago ,&nbsp;Amina S. Msengwa","doi":"10.1016/j.ibmed.2025.100199","DOIUrl":"10.1016/j.ibmed.2025.100199","url":null,"abstract":"<div><div>Cardiovascular Diseases (CVDs) are the major cause of morbidity, disability, and mortality worldwide and are the most life-threatening diseases. Early detection and appropriate action can significantly reduce the effects and complications of CVD. Prediction of the likelihood that an individual can develop CVD adverse outcomes is essential. Machine learning methods are used to predict the risk of CVD incidences. Optimal model parameters were obtained using the grid search and randomized search methods. A hyperparameter tuning method with the highest accuracy was used to find the optimal parameters for the six algorithms used in this study. Two experiments were deployed: the first was training and testing the CVD dataset using hyperparameterized ML algorithms excluding geographical features, and the second included geographical features. The geographical features are air humidity, temperature and education status of a location. The performances of the two experiments were compared using classification metrics. The findings revealed that the performance of the second experiment outperformed the first experiment. XGBoost achieved the highest accuracy of 95.24 %, followed by the decision tree 93.87 % and support vector machine 92.87 % when geographical features were included (second experiment). Including geographical risk factors in predicting CVD is crucial as they contribute to the probability of developing CVD incidences.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100199"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neonatal sepsis prediction algorithm using electronic medical record data from Mbarara Regional Referral Hospital 基于Mbarara地区转诊医院电子病历数据的新生儿败血症预测算法
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100198
Peace Ezeobi Dennis , Angella Musiimenta , William Wasswa , Stella Kyoyagala
{"title":"A neonatal sepsis prediction algorithm using electronic medical record data from Mbarara Regional Referral Hospital","authors":"Peace Ezeobi Dennis ,&nbsp;Angella Musiimenta ,&nbsp;William Wasswa ,&nbsp;Stella Kyoyagala","doi":"10.1016/j.ibmed.2025.100198","DOIUrl":"10.1016/j.ibmed.2025.100198","url":null,"abstract":"<div><h3>Introduction</h3><div>Neonatal sepsis is a global challenge that contributes significantly to neonatal morbidity and mortality. The current diagnostic methods depend on conventional culture methods, a procedure that takes time and leads to delays in making timely treatment decisions. This study proposes a machine learning algorithm utilizing electronic medical record (EMR) data from Mbarara Regional Referral Hospital (MRRH) to enhance early detection and treatment of neonatal sepsis.</div></div><div><h3>Methods</h3><div>We performed a retrospective study on a dataset of neonates hospitalized for at least 48 h in the Neonatal Intensive Care Unit (NICU) at MRRH between October 2015 to September 2019 who received at least one sepsis evaluation. 482 records of neonates met the inclusion criteria and the dataset comprises 38 neonatal sepsis screening parameters. The study considered two outcomes for sepsis evaluations: culture-positive if a blood culture was positive, and clinically positive if cultures were negative but antibiotics were administered for at least 120 h. We implemented k-fold cross-validation with k set to 10 to guarantee robust training and testing of the models. Seven machine learning models were trained to classify inputs as sepsis positive or negative, and their performance was compared with physician diagnoses.</div></div><div><h3>Results</h3><div>The results of this study show that the proposed algorithm, combining maternal risk factors, neonatal clinical signs, and laboratory tests (the algorithm demonstrated a sensitivity and specificity of at least 95 %) outperformed the physician diagnosis (Sensitivity = 89 %, Specificity = 11 %). SVM model with radial basis function, polynomial kernels, and DT model (with the highest AUROC values of 98 %) performed better than the other models.</div></div><div><h3>Conclusions</h3><div>The study shows that the combination of maternal risk factors, neonatal clinical signs, and laboratory tests can help improve the prediction of neonatal sepsis. Further research is warranted to assess the potential performance improvements and clinical efficacy in a prospective trial.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100198"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based approach to diagnose lung cancer using CT-scan images 基于深度学习的ct扫描图像肺癌诊断方法
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2024.100188
Mohammad Q. Shatnawi, Qusai Abuein, Romesaa Al-Quraan
{"title":"Deep learning-based approach to diagnose lung cancer using CT-scan images","authors":"Mohammad Q. Shatnawi,&nbsp;Qusai Abuein,&nbsp;Romesaa Al-Quraan","doi":"10.1016/j.ibmed.2024.100188","DOIUrl":"10.1016/j.ibmed.2024.100188","url":null,"abstract":"<div><div>The work in this research focuses on the automatic classification and prediction of lung cancer using computed tomography (CT) scans, employing Deep Learning (DL) strategies, specifically Enhanced Convolutional Neural Networks (CNNs), to enable rapid and accurate image analysis. This research designed and developed pre-trained models, including ConvNeXtSmall, VGG16, ResNet50, InceptionV3, and EfficientNetB0, to classify lung cancer. The dataset was divided into four classes, consisting of 338 images of adenocarcinoma, 187 images of large cell carcinoma, 260 images of squamous cell carcinoma, and 215 normal images. Notably, The Enhanced CNN model achieved an unprecedented testing accuracy of 100 %, outperforming all other models, which included ConvNeXt at 87 %, VGG16 at 99 %, ResNet50 at 94.5 %, InceptionV3 at 76.9 %, and EfficientNetB0 at 97.9 %. The study of this research is considered the first one that hits 100 % testing accuracy with an Enhanced CNN, demonstrating significant advancements in lung cancer detection through the application of sophisticated image enhancement techniques and innovative model architectures. This highlights the potential of Enhanced CNN models in transforming lung cancer diagnostics and emphasizes the importance of integrating advanced image processing techniques into clinical practice.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100188"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting patient no-shows using machine learning: A comprehensive review and future research agenda 利用机器学习预测患者未就诊情况:全面回顾与未来研究议程
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100229
Khaled M. Toffaha , Mecit Can Emre Simsekler , Mohammed Atif Omar , Imad ElKebbi
{"title":"Predicting patient no-shows using machine learning: A comprehensive review and future research agenda","authors":"Khaled M. Toffaha ,&nbsp;Mecit Can Emre Simsekler ,&nbsp;Mohammed Atif Omar ,&nbsp;Imad ElKebbi","doi":"10.1016/j.ibmed.2025.100229","DOIUrl":"10.1016/j.ibmed.2025.100229","url":null,"abstract":"<div><div>Patient no-shows for scheduled medical appointments pose significant challenges to healthcare systems, resulting in wasted resources, increased costs, and disrupted continuity of care. This comprehensive review examines state-of-the-art machine learning (ML) approaches for predicting patient no-shows in outpatient settings, analyzing 52 publications from 2010 to 2025.</div><div>The study reveals significant advancements in the field, with Logistic Regression (LR) as the most commonly used model in 68% of the studies. Tree-based models, ensemble methods, and deep learning techniques have gained traction in recent years, reflecting the field’s evolution. The best-performing models achieved Area Under the Curve (AUC) scores between 0.75 and 0.95, with accuracy ranging from 52% to 99.44%. Methodologically, researchers addressed common challenges such as class imbalance using various sampling techniques and employed a wide range of feature selection methods to improve model efficiency. The review also highlighted the importance of considering temporal factors and the context-dependent nature of no-show behavior across different healthcare settings.</div><div>Using the ITPOSMO framework (Information, Technology, Processes, Objectives, Staffing, Management, and Other Resources), the study identified several gaps in current ML approaches. Key challenges include data quality and completeness, model interpretability, and integration with existing healthcare systems. Future research directions include improving data collection methods, incorporating organizational factors, ensuring ethical implementation, and developing standardized approaches for handling data imbalance. The review also suggests exploring new data sources, utilizing ML algorithms to analyze patient behavior patterns, and using transfer learning techniques to adapt models across different healthcare facilities.</div><div>By addressing these challenges, healthcare providers can leverage ML to improve resource allocation, enhance patient care quality, and advance predictive analytics in healthcare. This comprehensive review underscores the potential of ML in predicting no-shows while acknowledging the complexities and challenges in its practical implementation.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100229"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid vision transformer and Xception model for reliable CT-based ovarian neoplasms diagnosis 基于ct的卵巢肿瘤可靠诊断的混合视觉变换器和异常模型
Intelligence-based medicine Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100227
Eman Hussein Alshdaifat , Hasan Gharaibeh , Amer Mahmoud Sindiani , Rola Madain , Asma'a Mohammad Al-Mnayyis , Hamad Yahia Abu Mhanna , Rawan Eimad Almahmoud , Hanan Fawaz Akhdar , Mohammad Amin , Ahmad Nasayreh , Raneem Hamad
{"title":"Hybrid vision transformer and Xception model for reliable CT-based ovarian neoplasms diagnosis","authors":"Eman Hussein Alshdaifat ,&nbsp;Hasan Gharaibeh ,&nbsp;Amer Mahmoud Sindiani ,&nbsp;Rola Madain ,&nbsp;Asma'a Mohammad Al-Mnayyis ,&nbsp;Hamad Yahia Abu Mhanna ,&nbsp;Rawan Eimad Almahmoud ,&nbsp;Hanan Fawaz Akhdar ,&nbsp;Mohammad Amin ,&nbsp;Ahmad Nasayreh ,&nbsp;Raneem Hamad","doi":"10.1016/j.ibmed.2025.100227","DOIUrl":"10.1016/j.ibmed.2025.100227","url":null,"abstract":"<div><div>Ovarian cancer is a major global health concern, characterized by high mortality rates and a lack of accurate diagnostic methods. Rapid and accurate detection of ovarian cancer is essential to improve patient outcomes and formulate appropriate treatment protocols. Medical imaging methods are essential for identifying ovarian cancer; however, achieving accurate diagnosis remains a challenge. This paper presents a robust methodology for ovarian cancer detection, including the identification and classification of benign and malignant tumors, using the Xception_ViT model. This hybrid approach was chosen because it combines the advantages of traditional CNN-based models (such as Xception) with the capabilities of modern Transformers-based models (such as ViT). This combination allows the model to take advantage of Xception, which extracts features from images. The Vision Transformer (ViT) model is then used to identify connections between diverse visual elements, enhancing the model's understanding of complex components. A Multi-Layer Perceptron (MLP) layer is finally integrated with the proposed model for image classification. The effectiveness of the model is evaluated using three computed tomography (CT) image datasets from King Abdullah University Hospital (KAUH) in Jordan. The first dataset consists of the ovarian cancer computed tomography dataset (KAUH-OCCTD), the second is the benign ovarian tumors dataset (KAUH-BOTD), and the third is the malignant ovarian tumors dataset (KAUH-MOTD). The three datasets collected from 500 women are characterized by their diversity in ovarian tumor classification and are the first of their kind collected in Jordan. The proposed model Xception_ViT achieved an accuracy of 98.09 % in identifying ovarian cancer on the KAUH-OCCTD dataset, and an accuracy of 96.05 % and 98.73 % on the KAUH-BOTD and KAUH-MOTD datasets, respectively, in distinguishing between benign and malignant ovarian tumors. The proposed model outperformed the pre-trained models on all three datasets. The results demonstrate that the proposed model can classify ovarian tumors. This method could also greatly enhance the efficiency of novice radiologists in evaluating ovarian malignancies and assist gynecologists in providing improved treatment alternatives for these individuals.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100227"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信